scholarly journals A new approach of inducing proprioceptive illusion by transcutaneous electrical stimulation

Author(s):  
Rohit Rangwani ◽  
Hangue Park

Abstract Background Neurotraumas or neurodegenerative diseases often result in proprioceptive deficits, which makes it challenging for the nervous system to adapt to the compromised sensorimotor conditions. Also, in human machine interactions, such as prosthesis control and teleoperation, proprioceptive mismatch limits accuracy and intuitiveness of controlling active joints in robotic agents. To address these proprioceptive deficits, several invasive and non-invasive approaches like vibration, electrical nerve stimulation, and skin stretch have been introduced. However, proprioceptive modulation is still challenging as the current solutions have limitations in terms of effectiveness, usability, and consistency. In this paper, we propose a new way of modulating proprioception using transcutaneous electrical stimulation. We hypothesized that transcutaneous electrical stimulation on elbow flexor muscles will induce illusion of elbow joint extension. Method Eight healthy human subjects participated in the study to test the hypothesis. Transcutaneous electrodes were placed on different locations targeting elbow flexor muscles on human subjects and experiments were conducted to identify the best locations for electrode placement, and best electrical stimulation parameters, to maximize induced proprioceptive effect. Arm matching experiments and Pinocchio illusion test were performed for quantitative and qualitative analysis of the observed effects. One-way repeated ANOVA test was performed on the data collected in arm matching experiment for statistical analysis. Results We identified the best location for transcutaneous electrodes to induce the proprioceptive illusion, as one electrode on the muscle belly of biceps brachii short head and the other on the distal myotendinous junction of brachioradialis. The results for arm-matching and Pinocchio illusion tests showed that transcutaneous electrical stimulation using identified electrode location and electrical stimulation parameters evoked the illusion of elbow joint extension for all eight subjects, which supports our hypothesis. On average, subjects reported 6.81° angular illusion of elbow joint extension in arm-matching tests and nose elongated to 1.78 × height in Pinocchio illusion test. Conclusions Transcutaneous electrical stimulation, applied between the the synergistic elbow flexor muscles, consistently modulated elbow joint proprioception with the illusion of elbow joint extension, which has immense potential to be translated into various real-world applications, including neuroprosthesis, rehabilitation, teleoperation, mixed reality, and etc.

2000 ◽  
Vol 83 (4) ◽  
pp. 2030-2039 ◽  
Author(s):  
Andrew E. Graves ◽  
Kurt W. Kornatz ◽  
Roger M. Enoka

The purpose of this study was to determine the effect of age on the ability to exert steady forces and to perform steady flexion movements with the muscles that cross the elbow joint. An isometric task required subjects to exert a steady force to match a target force that was displayed on a monitor. An anisometric task required subjects to raise and lower inertial loads so that the angular displacement around the elbow joint matched a template displayed on a monitor. Steadiness was measured as the coefficient of variation of force and as the normalized standard deviation of wrist acceleration. For the isometric task, steadiness as a function of target force decreased similarly for old adults and young adults. For the anisometric task, steadiness increased as a function of the inertial load and there were significant differences caused by age. Old adults were less steady than young adults during both shortening and lengthening contractions with the lightest loads. Furthermore, old adults were least steady when performing lengthening contractions. These behaviors appear to be associated with the patterns of muscle activation. These results suggest that different neural strategies are used to control isometric and anisometric contractions performed with the elbow flexor muscles and that these strategies do not change in parallel with advancing age.


1996 ◽  
Vol 76 (6) ◽  
pp. 586-600 ◽  
Author(s):  
Steven L Wolf ◽  
Richard L Segal ◽  
Pamela A Catlin ◽  
Julie Tschorn ◽  
Tina Raleigh ◽  
...  

2016 ◽  
Vol 2 (1) ◽  
pp. 395-398
Author(s):  
Aljoscha Reinert ◽  
Jan C. Loitz ◽  
Fanny Quandt ◽  
Dietmar Schroeder ◽  
Wolfgang H. Krautschneider

AbstractTranscutaneous electrical stimulation is a common treatment option for patients suffering from spinal cord injury or stroke. Two major difficulties arise when employing electrical stimulation in patients: Accurate stimulation electrode placement and configuration of optimal stimulation parameters. Optimizing the stimulation parameters has the advantage to reduce muscle fatigue after repetitive stimulation. Here we present a newly developed system which is able to automatically find the optimal individual stimulation intensity by varying the pulse length. The effectiveness is measured with flex sensors. By adapting the stimulation parameters, the effect of muscle fatigue can be compensated, allowing for a more stable movement upon stimulation over time.


1992 ◽  
Vol 68 (2) ◽  
pp. 449-470 ◽  
Author(s):  
R. F. Kirsch ◽  
W. Z. Rymer

1. The contribution to muscle force regulation provided by reflex pathways was studied in the elbow flexor muscles of seven normal human subjects, with the use of voluntary fatigue to induce a deficit in the force-generating capability of these muscles. To estimate the changes in the mechanical state of the muscle and the compensatory actions taken by reflex pathways to minimize the impact of fatigue, stochastic and "step" angular perturbations were applied to the joint, and the resulting joint stiffness and electromyographic (EMG) responses were compared before and after fatigue. 2. The magnitude of contractile fatigue, induced by repeatedly lifting a weight via a pulley system, was quantified by comparing the slope of the isometric torque-EMG relationship before and after fatigue. The exercise routine was quite effective in producing severe and long-lasting fatigue, with average percentage changes in the isometric torque-EMG slope of 210-306% for biceps and 129-205% for brachioradialis, depending on the point in time examined. 3. The torque response to a rapid step stretch of the elbow joint was quite similar before and after fatigue for the time interval before reflex action (less than 20 ms after stretch onset), suggesting that intrinsic muscle stiffness for a given mean torque level was not changed by fatigue. The steady-state torque level attained after completion of the stretch was always decreased after fatigue, indicating a decrease in the reflex component of joint stiffness, but this decrease was small compared with the change in the isometric torque-EMG relationship and was accompanied by a significantly larger incremental EMG response after fatigue. This increase in incremental EMG after fatigue was found to be of reflex origin, with activation-related reflex gain changes apparently playing a significant role only at low contraction levels. 4. Torque and angle responses recorded during stochastic perturbations were used to identify elbow joint compliance impulse responses. A second-order mechanical model was fit to each impulse response, and the parameters representing joint inertia, elastic stiffness, and viscous stiffness were used to summarize changes in joint mechanical properties as the mean contraction level was varied. For a perturbation with a relatively wide bandwidth (0-25 Hz), fatigue had little or no effect on the form of the compliance impulse response, apparently because the stimulus disabled reflex force generation in elbow flexor muscles, whereas a perturbation with a more restricted bandwidth (0-10 Hz) demonstrated consistent decreases in joint stiffness after fatigue.(ABSTRACT TRUNCATED AT 400 WORDS)


Author(s):  
Xin Ye ◽  
Robert J. Benton ◽  
William M. Miller ◽  
Sunggun Jeon ◽  
Jun Seob Song

2002 ◽  
Vol 88 (6) ◽  
pp. 3087-3096 ◽  
Author(s):  
Sandra K. Hunter ◽  
Daphne L. Ryan ◽  
Justus D. Ortega ◽  
Roger M. Enoka

Endurance time, muscle activation, and mean arterial pressure were measured during two types of submaximal fatiguing contractions that required each subject to exert the same net muscle torque in the two tasks. Sixteen men and women performed isometric contractions at 15% of the maximum voluntary contraction (MVC) force with the elbow flexor muscles, either by maintaining a constant force while pushing against a force transducer (force task) or by supporting an equivalent inertial load while maintaining a constant elbow angle (position task). The endurance time for the force task (1402 ± 728 s) was twice as long as that for the position task (702 ± 582 s, P < 0.05), despite a similar reduction in the load torque at exhaustion for each contraction. The rate of increase in average electromyographic activity (EMG, % peak MVC value) for the elbow flexor muscles was similar for the two tasks. However, the average EMG was greater at exhaustion for the force task (22.4 ± 1.2%) compared with the position task (14.9 ± 1.0%, P < 0.05). In contrast, the rates of increase in the mean arterial pressure, the rating of perceived exertion, anterior deltoid EMG, and fluctuations in motor output (force or acceleration) were greater for the position task compared with the force task ( P < 0.05). Furthermore, the rate of bursts in EMG activity, which corresponded to the transient recruitment of motor units, was greater for the brachialis muscle during the position task. These results indicate that the briefer endurance time for the position task was associated with greater levels of excitatory and inhibitory input to the motor neurons compared with the force task.


2016 ◽  
Vol 9 (1) ◽  
pp. 19-22
Author(s):  
Sumit Kalra ◽  
◽  
Nidhi Kalra ◽  
Davinder K. Gaur ◽  
Savita Tamaria ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document