pulse length
Recently Published Documents


TOTAL DOCUMENTS

577
(FIVE YEARS 96)

H-INDEX

33
(FIVE YEARS 5)

Author(s):  
Michal Zanáška ◽  
Daniel Lundin ◽  
Nils Brenning ◽  
Hao Du ◽  
Pavel Dvorak ◽  
...  

Abstract The plasma potential at a typical substrate position is studied during the positive pulse of a bipolar high-power impulse magnetron sputtering (bipolar HiPIMS) discharge with a Cu target. The goal of the study is to identify suitable conditions for achieving ion acceleration independent on substrate grounding. We find that the time-evolution of the plasma potential during the positive pulse can be separated into several distinct phases, which are highly dependent on the discharge conditions. This includes exploring the influence of the working gas pressure (0.3 – 2 Pa), HiPIMS peak current (10 – 70 A corresponding to 0.5 – 3.5 A/cm2), HiPIMS pulse length (5 – 60 μs) and the amplitude of the positive voltage U+ applied during the positive pulse (0 – 150 V). At low enough pressure, high enough HiPIMS peak current and long enough HiPIMS pulse length, the plasma potential at a typical substrate position is seen to be close to 0 V for a certain time interval (denoted phase B) during the positive pulse. At the same time, spatial mapping of the plasma potential inside the magnetic trap region revealed an elevated value of the plasma potential during phase B. These two plasma potential characteristics are identified as suitable for achieving ion acceleration in the target region. Moreover, by investigating the target current and ion saturation current at the chamber walls, we describe a simple theory linking the value of the plasma potential profile to the ratio of the available target electron current and ion saturation current at the wall.


2022 ◽  
Author(s):  
Hao Jian-Hong ◽  
Xue Bi-Xi ◽  
Zhao Qiang ◽  
Zhang Fang ◽  
Fan Jie-Qing ◽  
...  

Abstract It is known that ion-focused regime can effectively suppress the expansion of relativistic electron beam (REB). By using particle in cell-Monte Carlo collision (PIC-MCC) method, the propagation of REBs in neutral gas is numerically investigated. The numerical results demonstrate that the beam body is charge neutralization and a stable IFR can be established. As a result, the beam transverse dimensions and longitudinal velocities keep close to the initial parameters. We also calculated the charge and current neutralization factors of REBs. Combined with envelope equations, we obtained the variations of beam envelopes, which agree well with the PIC simulations. However, both the energy loss and instabilities of REBs may lead to a low transport efficiency during long-range propagation. It has been proved that decreasing the initial pulse length of REBs can avoid the influence of electron avalanche. Using parts of REB pulses to build a long-distance IFR in advance can improve the beam quality of subsequent pulses. Further, a long-distance IFR may contribute to the implementation of long-range propagation of REBs in the space environment.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Chiao-Yin Wang ◽  
Sung-Yu Chu ◽  
Yu-Ching Lin ◽  
Yu-Wei Tsai ◽  
Ching-Lung Tai ◽  
...  

AbstractOsteoporosis is a critical problem during aging. Ultrasound signals backscattered from bone contain information associated with microstructures. This study proposed using entropy imaging to collect the information in bone microstructures as a possible solution for ultrasound bone tissue characterization. Bone phantoms with different pounds per cubic foot (PCF) were used for ultrasound scanning by using single-element transducers of 1 (nonfocused) and 3.5 MHz (nonfocused and focused). Clinical measurements were also performed on lumbar vertebrae (L3 spinal segment) in participants with different ages (n = 34) and postmenopausal women with low or moderate-to-high risk of osteoporosis (n = 50; identified using the Osteoporosis Self-Assessment Tool for Taiwan). The signals backscattered from the bone phantoms and subjects were acquired for ultrasound entropy imaging by using sliding window processing. The independent t-test, one-way analysis of variance, Spearman correlation coefficient rs, and the receiver operating characteristic (ROC) curve were used for statistical analysis. The results indicated that ultrasound entropy imaging revealed changes in bone microstructures. Using the 3.5-MHz focused ultrasound, small-window entropy imaging (side length: one pulse length of the transducer) was found to have high performance and sensitivity in detecting variation among the PCFs (rs = − 0.83; p < 0.05). Small-window entropy imaging also performed well in discriminating young and old participants (p < 0.05) and postmenopausal women with low versus moderate-to-high osteoporosis risk (the area under the ROC curve = 0.80; cut-off value = 2.65; accuracy = 86.00%; sensitivity = 71.43%; specificity = 88.37%). Ultrasound small-window entropy imaging has great potential in bone tissue characterization and osteoporosis assessment.


2021 ◽  
pp. 4694-4701
Author(s):  
Qusay Adnan Abbas

      The present work investigated the effect of distance from target surface on the parameters of lead plasma excited by 1064nm Q-switched Nd:YAG laser. The excitation was conducted in air, at atmospheric pressure, with pulse length of 5 ns, and at different pulse laser energies. Electron temperature was calculated by Boltzmann plot method based on the PbI emission spectral lines (369.03 nm, 416.98 nm, 523.48, and 561.94 nm). The PbI lines were recorded at different distances from the target surface at laser pulse energies of 260 and 280 mJ. The emission intensity of plasma increased with increasing the lens-to-target distance. The results also detected an increase in electron temperature with increasing the distance between the focal lens and the surface of the target in all laser energies under study. In addition, the electron number density was determined by using the Stark broadening method. The data illustrated that the electron number density was increased with increasing the distance from target surface, reaching the maximum at a distance of 11 cm for all pulse laser energy levels under study.


Author(s):  
Ronald Agustsson ◽  
Paul Carriere ◽  
Osvaldo Chimalpopoca ◽  
Valery A. Dolgashev ◽  
Maria A Gusarova ◽  
...  

Abstract Recent research on high-gradient radio frequency (RF) accelerating structures indicates that the use of hard copper alloys provides improvement in high gradient performance over annealed copper. Such structures are made by bonding individually manufactured parts. However, there are no well-established bonding techniques that preserve the hardness, surface finish and cleanliness required for high gradient operation. To preserve the copper hardness, RadiaBeam has developed a joining technique based on electron beam welding. This technique provides efficient bonding with strong, clean welds and minimal thermal loading, while maintaining a clean inner RF environment. Our RF design and fabrication methodology limits the small heat affected zone to the outer cavity envelop, with virtually no distortions or thermal loading of critical RF surfaces. It also incorporates provisions to precisely control the gap despite conventional issues with weld joint shrinkage. To date we have manufactured and validated an RF accelerating structure joined by electron-beam welding that incorporates a novel open split design to significantly reduce the assembly complexity and cost. In this paper, we will present the electromagnetic design of this structure, discuss bonding, and present the results of high-power tests, where the accelerating gradients of 140 MV/m with surface peak fields of 400 MV/m were achieved for flat-top pulse length of 600 ns with an RF breakdown rate of 10-4 1/(pulse∙m).


Author(s):  
Linh Thai Dieu Truong ◽  
Peter J Lesniewski ◽  
Bruce Wedding

Abstract A realistic model of human retinal tissues to simulate thermal performance of optical laser photocoagulation therapy is presented. The key criteria to validate the treatment effectiveness is to ensure the photocoagulation temperature between 60 and 70°C is reached in the treatment region of interest. The model presented consists of truncated volumes of the retinal pigment epithelium (RPE) and adjacent retinal tissues. Two cases of choroid pigmentation are modelled to signify extreme cases of human eye difference: albino and dark colour choroid pigmentation. Conditions for consistent heating over the irradiated treatment spot is modelled for laser beams with different intensity profiles: ‘top-hat’, Gaussian and ‘donut’ modes. The simulation considers both uniform heating within retinal tissue layers and spatial intensity decay due to absorption along the direction of laser propagation. For a 500 m spot, pulse length 100 ms and incident power to the cornea of 200 mW, realistic spatial variation in heating results in peak temperatures increasing within the RPE and shifting towards the choroid in the case of choroidal pigmentation. Finite element analysis methodology, where heat transfer theory governs the temperature evolution throughout tissues peripheral to the irradiated RPE is used to determine the zone of therapeutic benefit. While a TEM01 donut mode beam produces lower peak temperatures in the RPE for a given incident laser power, it reduces the volume of retinal tissue reaching excessive temperatures and maximises the zone of therapeutic benefit. Described are simulation limitations, boundary conditions, grid size and mesh growth factor required for realistic simulation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Z. T. Zhao ◽  
Z. Wang ◽  
C. Feng ◽  
S. Chen ◽  
L. Cao

AbstractEnergy recovery linac (ERL) holds great promise for generating high repetition-rate and high brightness electron beams. The application of ERL to drive a free-electron laser is currently limited by its low peak current. In this paper, we consider the combination of ERL with the recently proposed angular-dispersion induced microbunching technique to generate fully coherent radiation pulses with high average brightness and tunable pulse length. Start-to-end simulations have been performed based on a low energy ERL (600 MeV) for generating coherent EUV radiation pulses. The results indicate an average brightness over 1025 phs/s/mm2/mrad2/0.1%BW and average power of about 100 W at 13.5 nm or 20 W with the spectral resolution of about 0.5 meV with the proposed technique. Further extension of the proposed scheme to shorter wavelength based on an ERL complex is also discussed.


2021 ◽  
Author(s):  
Shingo Kukita ◽  
Haruki Kiya ◽  
Yasushi Kondo

Abstract The precision of quantum operations is affected by unavoidable systematic errors. A composite pulse (CP), which has been well investigated in nuclear magnetic resonance (NMR), is a technique that suppresses the influence of systematic errors by replacing a single operation with a sequence of operations. In NMR, there are two typical systematic errors, Pulse Length Error (PLE) and Off Resonance Error (ORE). Recently, it was found that PLE robust CPs have a clear geometric property. In this study, we show that ORE robust CPs also have a simple geometric property, which is associated with trajectories on the Bloch sphere of the corresponding operations. We discuss the geometric property of ORE robust CPs using two examples.


Photonics ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 442
Author(s):  
Sergey V. Kutsaev ◽  
Vladimir Goncharik ◽  
Alex Murokh ◽  
Ilya Rezanov ◽  
Dmitry Shchegolkov ◽  
...  

The development of novel high-gradient accelerating structures operating at THz frequencies is critical for future free-electron lasers and TeV scale linear colliders. To reach high energies with reasonable length requires high accelerating gradients of ~100 MV/m. The main limitation to reaching these high-energy gradients is the vacuum RF breakdown phenomenon, which disrupts normal accelerator operations. For stable operations and to understand the breakdown microscopic dynamics, a new device capable of detecting the breakdown occurrences is required. In this paper, we provide the design of a pulse length monitor based on an analog to digital converter for fast signal digitization without the need to use high-speed digitizers to be used in a commercial mm-wave heterodyne spectrometer.


Sign in / Sign up

Export Citation Format

Share Document