scholarly journals CODEX2: full-spectrum copy number variation detection by high-throughput DNA sequencing

2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Yuchao Jiang ◽  
Rujin Wang ◽  
Eugene Urrutia ◽  
Ioannis N. Anastopoulos ◽  
Katherine L. Nathanson ◽  
...  
2017 ◽  
Author(s):  
Yuchao Jiang ◽  
Rujin Wang ◽  
Eugene Urrutia ◽  
Ioannis N. Anastopoulos ◽  
Katherine L. Nathanson ◽  
...  

AbstractHigh-throughput DNA sequencing enables detection of copy number variations (CNVs) on the genome-wide scale with finer resolution compared to array-based methods, but suffers from biases and artifacts that lead to false discoveries and low sensitivity. We describe CODEX2, a statistical framework for full-spectrum CNV profiling that is sensitive for variants with both common and rare population frequencies and that is applicable to study designs with and without negative control samples. We demonstrate and evaluate CODEX2 on whole-exome and targeted sequencing data, where biases are the most prominent. CODEX2 outperforms existing methods and, in particular, significantly improves sensitivity for common CNVs.


2020 ◽  
Vol 160 (11-12) ◽  
pp. 634-642
Author(s):  
Shiqiang Luo ◽  
Xingyuan Chen ◽  
Tizhen Yan ◽  
Jiaolian Ya ◽  
Zehui Xu ◽  
...  

High-throughput sequencing based on copy number variation (CNV-seq) is commonly used to detect chromosomal abnormalities. This study identifies chromosomal abnormalities in aborted embryos/fetuses in early and middle pregnancy and explores the application value of CNV-seq in determining the causes of pregnancy termination. High-throughput sequencing was used to detect chromosome copy number variations (CNVs) in 116 aborted embryos in early and middle pregnancy. The detection data were compared with the Database of Genomic Variants (DGV), the Database of Chromosomal Imbalance and Phenotype in Humans using Ensemble Resources (DECIPHER), and the Online Mendelian Inheritance in Man (OMIM) database to determine the CNV type and the clinical significance. High-throughput sequencing results were successfully obtained in 109 out of 116 specimens, with a detection success rate of 93.97%. In brief, there were 64 cases with abnormal chromosome numbers and 23 cases with CNVs, in which 10 were pathogenic mutations and 13 were variants of uncertain significance. An abnormal chromosome number is the most important reason for embryo termination in early and middle pregnancy, followed by pathogenic chromosome CNVs. CNV-seq can quickly and accurately detect chromosome abnormalities and identify microdeletion and microduplication CNVs that cannot be detected by conventional chromosome analysis, which is convenient and efficient for genetic etiology diagnosis in miscarriage.


2020 ◽  
Vol 36 (12) ◽  
pp. 3890-3891
Author(s):  
Linjie Wu ◽  
Han Wang ◽  
Yuchao Xia ◽  
Ruibin Xi

Abstract Motivation Whole-genome sequencing (WGS) is widely used for copy number variation (CNV) detection. However, for most bacteria, their circular genome structure and high replication rate make reads more enriched near the replication origin. CNV detection based on read depth could be seriously influenced by such replication bias. Results We show that the replication bias is widespread using ∼200 bacterial WGS data. We develop CNV-BAC (CNV-Bacteria) that can properly normalize the replication bias and other known biases in bacterial WGS data and can accurately detect CNVs. Simulation and real data analysis show that CNV-BAC achieves the best performance in CNV detection compared with available algorithms. Availability and implementation CNV-BAC is available at https://github.com/XiDsLab/CNV-BAC. Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Vol 5 (3) ◽  
pp. 307-314 ◽  
Author(s):  
Lydia Sagath ◽  
Vilma-Lotta Lehtokari ◽  
Salla Välipakka ◽  
Bjarne Udd ◽  
Carina Wallgren-Pettersson ◽  
...  

2015 ◽  
Vol 143 (suppl_1) ◽  
pp. A013-A013
Author(s):  
Linda B. Baughn ◽  
Getiria Onsongo ◽  
Matthew Bower ◽  
Christine Henzler ◽  
Kevin A.T. Silverstein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document