scholarly journals Magnetism of materials: theory and practice in magnetic resonance imaging

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michele Gaeta ◽  
Marco Cavallaro ◽  
Sergio Lucio Vinci ◽  
Enricomaria Mormina ◽  
Alfredo Blandino ◽  
...  

AbstractAll substances exert magnetic properties in some extent when placed in an external magnetic field. Magnetic susceptibility represents a measure of the magnitude of magnetization of a certain substance when the external magnetic field is applied. Depending on the tendency to be repelled or attracted by the magnetic field and in the latter case on the magnitude of this effect, materials can be classified as diamagnetic or paramagnetic, superparamagnetic and ferromagnetic, respectively. Knowledge of type and extent of susceptibility of common endogenous and exogenous substances and how their magnetic properties affect the conventional sequences used in magnetic resonance imaging (MRI) can help recognize them and exalt or minimize their presence in the acquired images, so as to improve diagnosis in a wide variety of benign and malignant diseases. Furthermore, in the context of diamagnetic susceptibility, chemical shift imaging enables to assess the intra-voxel ratio between water and fat content, analyzing the tissue composition of various organs and allowing a precise fat quantification. The following article reviews the fundamental physical principles of magnetic susceptibility and examines the magnetic properties of the principal endogenous and exogenous substances of interest in MRI, providing potential through representative cases for improved diagnosis in daily clinical routine.

2009 ◽  
Vol 151 ◽  
pp. 88-94 ◽  
Author(s):  
Ivo Safarik ◽  
Mirka Safarikova

Magnetic nano- and microparticles have already found many important applications in various areas of biosciences, medicine, biotechnology, environmental technology etc. These smart materials exhibit different types of response to external magnetic field. In most cases they can be described as composite materials, where the magnetic properties are caused by the presence of iron oxides nano- or microparticles. Such materials can be efficiently separated from difficult-to-handle samples and targeted to the desired place, applied as contrast agents for magnetic resonance imaging, used to generate heat during exposure to alternating magnetic field or to modify biomolecules and biological structures.


Radiology ◽  
1984 ◽  
Vol 151 (1) ◽  
pp. 127-133 ◽  
Author(s):  
L E Crooks ◽  
M Arakawa ◽  
J Hoenninger ◽  
B McCarten ◽  
J Watts ◽  
...  

2002 ◽  
Vol 27 (2) ◽  
pp. 165-170 ◽  
Author(s):  
M. GANAPATHI ◽  
G. JOSEPH ◽  
R. SAVAGE ◽  
A. R. JONES ◽  
B. TIMMS ◽  
...  

Metal implants produce susceptibility artefacts in magnetic resonance imaging. We have explored the effects of scaphoid screw characteristics and orientation on MR susceptibility artefact. Titanium alloy, smallness and longitudinal alignment with the z-axis of the main magnetic field reduce the size of the susceptibility artefact.


2017 ◽  
Vol 35 (18) ◽  
pp. 3924-3933 ◽  
Author(s):  
Massimo L. Filograno ◽  
Marco Pisco ◽  
Angelo Catalano ◽  
Ernesto Forte ◽  
Marco Aiello ◽  
...  

2015 ◽  
Vol 106 (10) ◽  
pp. 103702 ◽  
Author(s):  
Seong-Joo Lee ◽  
Jeong Hyun Shim ◽  
Kiwoong Kim ◽  
Kwon Kyu Yu ◽  
Seong-min Hwang

2021 ◽  
Vol 9 (37) ◽  
pp. 21078-21084
Author(s):  
Konstantin Romanenko ◽  
Alexej Jerschow

Batteries share their “health problems” and “memories” of hazardous life-cycle events via DC-induced magnetic field patterns revealed by MRI.


Sign in / Sign up

Export Citation Format

Share Document