scholarly journals Characterization of natural co-cultures of Piromyces with Methanobrevibacter ruminantium from yaks grazing on the Qinghai-Tibetan Plateau: a microbial consortium with high potential in plant biomass degradation

AMB Express ◽  
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Ya-Qin Wei ◽  
Hong-Jian Yang ◽  
Rui-Jun Long ◽  
Zhi-Ye Wang ◽  
Bin-Bin Cao ◽  
...  
2018 ◽  
Author(s):  
Andrea Söllinger ◽  
Alexander Tøsdal Tveit ◽  
Morten Poulsen ◽  
Samantha Joan Noel ◽  
Mia Bengtsson ◽  
...  

AbstractBackgroundRuminant livestock is a major source of the potent greenhouse gas methane (CH4), produced by the complex rumen microbiome. Using an integrated approach, combining quantitative metatranscriptomics with gas- and volatile fatty acid (VFA) profiling, we gained fundamental insights into temporal dynamics of the cow rumen microbiome during feed degradation.ResultsThe microbiome composition was highly individual and remarkably stable within each cow, despite similar gas emission and VFA profiles between cows. Gene expression profiles revealed a fast microbial growth response to feeding, reflected by drastic increases in microbial biomass, CH4emissions and VFA concentrations. Microbiome individuality was accompanied by high inter- and intra-domain functional redundancy among pro- and eukaryotic microbiome members in the key steps of anaerobic feed degradation. Methyl-reducing but not CO2-reducing methanogens were correlated with increased CH4emissions during plant biomass degradation.ConclusionsThe major response of the rumen microbiome to feed intake was a general growth of the whole community. The high functional redundancy of the cow-individual microbiomes was possibly linked to the robust performance of the anaerobic degradation process. Furthermore, the strong response of methylotrophic methanogens is suggesting that they might play a more important role in ruminant CH4emissions than previously assumed, making them potential targets for CH4mitigation strategies.


2019 ◽  
Author(s):  
Jaire A. Ferreira Filho ◽  
Maria Augusta C. Horta ◽  
Clelton A. dos Santos ◽  
Deborah A. Almeida ◽  
Natália F. Murad ◽  
...  

AbstractBackgroundUnveiling fungal genome structure and function reveals the potential biotechnological use of fungi. Trichoderma harzianum is a powerful CAZyme-producing fungus. We studied the genomic regions in T. harzianum IOC3844 containing CAZyme genes, transcription factors and transporters.ResultsWe used bioinformatics tools to mine the T. harzianum genome for potential genomics, transcriptomics, and exoproteomics data and coexpression networks. The DNA was sequenced by PacBio SMRT technology for multi-omics data analysis and integration. In total, 1676 genes were annotated in the genomic regions analyzed; 222 were identified as CAZymes in T. harzianum IOC3844. When comparing transcriptome data under cellulose or glucose conditions, 114 genes were differentially expressed in cellulose, with 51 CAZymes. CLR2, a transcription factor physically and phylogenetically conserved in T. harzianum spp., was differentially expressed under cellulose conditions. The genes induced/repressed under cellulose conditions included those important for plant biomass degradation, including CIP2 of the CE15 family and a copper-dependent LPMO of the AA9 family.ConclusionsOur results provide new insights into the relationship between genomic organization and hydrolytic enzyme expression and regulation in T. harzianum IOC3844. Our results can improve plant biomass degradation, which is fundamental for developing more efficient strains and/or enzymatic cocktails for the production of hydrolytic enzymes.


mSystems ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Zachary Armstrong ◽  
Feng Liu ◽  
Sam Kheirandish ◽  
Hong-Ming Chen ◽  
Keith Mewis ◽  
...  

ABSTRACT Functional metagenomics is a powerful tool for both the discovery and development of biocatalysts. This study presents the high-throughput functional screening of 22 large-insert fosmid libraries containing over 300,000 clones sourced from natural and engineered ecosystems, characterization of active clones, and a demonstration of the utility of recovered genes or gene cassettes in the development of novel biocatalysts. Screening was performed in a 384-well-plate format with the fluorogenic substrate 4-methylumbelliferyl cellobioside, which releases a fluorescent molecule when cleaved by β-glucosidases or cellulases. The resulting set of 164 active clones was subsequently interrogated for substrate preference, reaction mechanism, thermal stability, and optimal pH. The environmental DNA harbored within each active clone was sequenced, and functional annotation revealed a cornucopia of carbohydrate-degrading enzymes. Evaluation of genomic-context information revealed both synteny and polymer-targeting loci within a number of sequenced clones. The utility of these fosmids was then demonstrated by identifying clones encoding activity on an unnatural glycoside (4-methylumbelliferyl 6-azido-6-deoxy-β-d-galactoside) and transforming one of the identified enzymes into a glycosynthase capable of forming taggable disaccharides. IMPORTANCE The generation of new biocatalysts for plant biomass degradation and glycan synthesis has typically relied on the characterization and investigation of one or a few enzymes at a time. By coupling functional metagenomic screening and high-throughput functional characterization, we can progress beyond the current scale of catalyst discovery and provide rapid annotation of catalyst function. By functionally screening environmental DNA from many diverse sources, we have generated a suite of active glycoside hydrolase-containing clones and demonstrated their reaction parameters. We then demonstrated the utility of this collection through the generation of a new catalyst for the formation of azido-modified glycans. Further interrogation of this collection of clones will expand our biocatalytic toolbox, with potential application to biomass deconstruction and synthesis of glycans.


Author(s):  
Camila L. Corrêa ◽  
Glaucia E. O. Midorikawa ◽  
Edivaldo Ximenes Ferreira Filho ◽  
Eliane Ferreira Noronha ◽  
Gabriel S. C. Alves ◽  
...  

2009 ◽  
Vol 59 (2) ◽  
pp. 212-213 ◽  
Author(s):  
Mark Morrison ◽  
◽  
Sean C. Daugherty ◽  
William C. Nelson ◽  
Tanja Davidsen ◽  
...  

2018 ◽  
Vol 91 ◽  
pp. 79-99 ◽  
Author(s):  
M.R. Mäkelä ◽  
M. DiFalco ◽  
E. McDonnell ◽  
T.T.M. Nguyen ◽  
A. Wiebenga ◽  
...  

2013 ◽  
Vol 6 (1) ◽  
pp. 24 ◽  
Author(s):  
Aaron Weimann ◽  
Yulia Trukhina ◽  
Phillip B Pope ◽  
Sebastian GA Konietzny ◽  
Alice C McHardy

Sign in / Sign up

Export Citation Format

Share Document