scholarly journals Manipulating the soil microbiomes during a community recovery process with plant beneficial species for the suppression of Fusarium wilt of watermelon

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xu Zhang ◽  
Chao Xue ◽  
Dan Fang ◽  
Xiaohui He ◽  
Mengyu Wei ◽  
...  

AbstractFusarium wilt is a devastating disease which impacts watermelon production. Soil fumigation using dazomet followed by biological organic fertilizer was applied to suppress the Fusarium wilt disease. We propose that fumigation suppresses the soil indigenous community, especially the soil-borne pathogens, while the utilization of bio-organic fertilizer facilitates the recovery of the soil microbiome to a beneficial, suppressive state through the introduction of plant growth-promoting microorganisms. Greenhouse experiment showed that applied biological organic fertilizer after dazomet fumigation effective restrain the disease incidence with a 93.6% disease control. Fumigation strongly decreased soil microbial diversity and altered relative taxa abundances, suggesting the possibility of niche release by the resident soil microbial community. Fumigation followed by bio-fertilizer transformed the soil microbial community composition and resulted in higher relative abundances of beneficial microbial groups such as Bacillus (8.5%) and Trichoderma (13.5%), coupled with lower Fusarium abundance compared to other treatments. Network analysis illustrated that soil fumigation decreased interactions within the soil microbial community with less nodes and links while bio-fertilizer addition promoted node interactions. In addition, bio-fertilizer addition after fumigation resulted in the beneficial species becoming the key network connectors. Collectively, fumigation appears to release the resident soil niche resulting in lower diversity while the beneficial microbes introduced by bio-fertilizer addition colonize these niches, leading to a more complex community with fewer pathogens that suppresses Fusarium wilt disease incidence.

2021 ◽  
Author(s):  
Dandan Xu ◽  
Jinfeng Ling ◽  
Pinggen Xi ◽  
Yani Zeng ◽  
Jianfan Zhang ◽  
...  

Abstract Organic mulching is an important management practice in agricultural production to improve soil quality, control crop pests and diseases and increase the biodiversity of soil microecosystem. However, the information about soil microbial diversity and composition in litchi plantation response to organic mulching and its attribution to litchi downy blight severity was limited. This study aimed to investigate the effect of organic mulching on litchi downy blight, and evaluate the biodiversity and antimicrobial potential of soil microbial community of litchi plantation soils under organic mulching. Our results showed that organic mulching could decrease the disease incidence in the litchi plantation. As a result of high-throughput 16S rRNA and ITS rDNA gene illumine sequencing, higher bacterial and fungal community diversity indexes were found in organic mulching soils, the relative abundance of norank f norank o Vicinamibacterales, norank f Vicinamibacteraceae, norank f Xanthobacteraceae, Unclassified c sordariomycetes, Aspergillus and Thermomyces were significant more than that in control soils. Isolation and analysis of antagonistic microorganism showed that 29 antagonistic bacteria strains and 37 antagonistic fungi strains were unique for mulching soils. Thus, we believe that organic mulching has a positive regulatory effect on the litchi downy blight and the soil microbial communities, and so, is more suitable for litchi plantation.


2021 ◽  
Author(s):  
Dandan Xu ◽  
Jinfeng Ling ◽  
Fang Qiao ◽  
Pinggen Xi ◽  
Yani Zeng ◽  
...  

Abstract Background: Organic mulching is an important management practice in agricultural production to improve soil quality, control crop pests and diseases and increase the biodiversity of soil microecosystem. However, the information about soil microbial diversity and composition in litchi plantation response to organic mulching and its attribution to litchi downy blight severity was limited. This study aimed to investigate the effect of organic mulching on litchi downy blight, and evaluate the biodiversity and antimicrobial potential of soil microbial community of litchi plantation soils under organic mulching. Results: Organic mulching could decrease the disease incidence in the litchi plantation. As a result of high-throughput 16S rRNA and ITS rDNA gene illumine sequencing, higher bacterial and fungal community diversity indexes were found in organic mulching soils, the relative abundance of norank f norank o Vicinamibacterales, norank f Vicinamibacteraceae, norank f Xanthobacteraceae, Unclassified c sordariomycetes, Aspergillus and Thermomyces were significant more than that in control soils. Isolation and analysis of antagonistic microorganism showed that 29 antagonistic bacteria strains and 37 antagonistic fungi strains were unique for mulching soils.Conclusions: Thus, we believe that organic mulching has a positive regulatory effect on the litchi downy blight and the soil microbial communities, and so, is more suitable for litchi plantation.


Author(s):  
Aditi Sengupta ◽  
Priyanka Kushwaha ◽  
Antonia Jim ◽  
Peter A. Troch ◽  
Raina Maier

The plant-microbe-soil nexus is critical in maintaining biogeochemical balance of the biosphere. However, soil loss and land degradation are occurring at alarmingly high rates, with soil loss exceeding soil formation rates. This necessitates evaluating marginal soils for their capacity to support and sustain plant growth. In a greenhouse study, we evaluated the capacity of marginal incipient basaltic parent material to support native plant growth, and the associated variation in soil microbial community dynamics. Three plant species, native to the Southwestern Arizona-Sonora region were tested with three soil treatments including basaltic parent material, parent material amended with 20% compost, and potting soil. The parent material with and without compost supported germination and growth of all the plant species, though germination was lower than the potting soil. A 16S rRNA amplicon sequencing approach showed Proteobacteria to be the most abundant phyla in both parent material and potting soil, followed by Actinobacteria. Microbial community composition had strong correlations with soil characteristics but not plant attributes within a given soil material. Predictive functional potential capacity of the communities revealed chemoheterotrophy as the most abundant metabolism within the parent material, while photoheterotrophy and anoxygenic photoautotrophy were prevalent in the potting soil. These results show that marginal incipient basaltic soil has the ability to support native plant species growth, and non-linear associations may exist between plant-marginal soil-microbial interactions.


Sign in / Sign up

Export Citation Format

Share Document