soil fumigation
Recently Published Documents


TOTAL DOCUMENTS

335
(FIVE YEARS 23)

H-INDEX

28
(FIVE YEARS 2)

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1678
Author(s):  
Daniela Giovannini ◽  
Federica Brandi ◽  
Anna Paola Lanteri ◽  
Luca Lazzeri ◽  
Maria Luigia Maltoni ◽  
...  

In intensive strawberry production, monoculture is a common practice worldwide; however, prolonged replanting can cause plant disorders and jeopardize profitable cultivation of this highly valuable crop. To mitigate replanting problems, the strawberry industry is still highly dependent on chemical fumigation. Given the increasing regulatory restrictions and concerns about human and environmental risks from fumigants use, there is a growing interest in the adoption of effective, non-chemical alternatives. Two non-chemical soil fumigation practices, i.e., anaerobic soil disinfestation (ASD) and bio-fumigation with biocide plants (BIOFUM), were tested against chemical fumigation by chloropicrin + 1,3-dichloropropene mixture (STANDARD) and untreated (UNTREAT) control in a 2-year trial established in a commercial strawberry farm in Southern Italy (40°25’ N, 16°42′ E). Overall, the alternative practices provided consistently better results than UNTREAT; whereas, compared to STANDARD, their performance was significantly different in the two years: in 2018/19 season the alternative practices registered a 20% (ASD) and 39% (BIOFUM) marketable yield loss compared to STANDARD, while in the 2019/20 season yield differences were not significant. Although both practices appear promising as eco-friendly alternatives to chemical fumigation, in this short-term trial ASD performed better than BIOFUM both in terms of yield and fruit size, resulting in a more advanced stage for practical adoption.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xu Zhang ◽  
Chao Xue ◽  
Dan Fang ◽  
Xiaohui He ◽  
Mengyu Wei ◽  
...  

AbstractFusarium wilt is a devastating disease which impacts watermelon production. Soil fumigation using dazomet followed by biological organic fertilizer was applied to suppress the Fusarium wilt disease. We propose that fumigation suppresses the soil indigenous community, especially the soil-borne pathogens, while the utilization of bio-organic fertilizer facilitates the recovery of the soil microbiome to a beneficial, suppressive state through the introduction of plant growth-promoting microorganisms. Greenhouse experiment showed that applied biological organic fertilizer after dazomet fumigation effective restrain the disease incidence with a 93.6% disease control. Fumigation strongly decreased soil microbial diversity and altered relative taxa abundances, suggesting the possibility of niche release by the resident soil microbial community. Fumigation followed by bio-fertilizer transformed the soil microbial community composition and resulted in higher relative abundances of beneficial microbial groups such as Bacillus (8.5%) and Trichoderma (13.5%), coupled with lower Fusarium abundance compared to other treatments. Network analysis illustrated that soil fumigation decreased interactions within the soil microbial community with less nodes and links while bio-fertilizer addition promoted node interactions. In addition, bio-fertilizer addition after fumigation resulted in the beneficial species becoming the key network connectors. Collectively, fumigation appears to release the resident soil niche resulting in lower diversity while the beneficial microbes introduced by bio-fertilizer addition colonize these niches, leading to a more complex community with fewer pathogens that suppresses Fusarium wilt disease incidence.


2021 ◽  
Vol 312 ◽  
pp. 107336
Author(s):  
An-Hui Ge ◽  
Zhi-Huai Liang ◽  
Ji-Ling Xiao ◽  
Yi Zhang ◽  
Qing Zeng ◽  
...  

2021 ◽  
pp. 117160
Author(s):  
Hongyan Cheng ◽  
Daqi Zhang ◽  
Lirui Ren ◽  
Zhaoxin Song ◽  
Qingjie Li ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 526
Author(s):  
Berta de los Santos ◽  
Juan Jesús Medina ◽  
Luis Miranda ◽  
José Antonio Gómez ◽  
Miguel Talavera

(1) Background: Strawberry cultivation is highly dependent on soil disinfestation for proper development. Since the definitive methyl bromide phase-out, other chemicals have been used as alternatives. This research provides an overview on the efficacies of soil disinfestation methods on controlling soil fungal diseases of strawberry. (2) Methods: The efficacy of several soil disinfestation methods on soil fungal pathogens (SFP: Fusarium spp. and Macrophominaphaseolina) was analyzed in experimental field trials during eleven growing seasons. (3) Results: Average efficiencies in reducing soil pathogen inocula for soil disinfestation techniques are given. Soil disinfestations with chloropicrin, allyl isothiocyanate, dazomet, 1,3-dichloropropene:chloropicrin, methyl iodide:chloropicrin, and dimethyl disulfide reduced Fusarium spp. and M. phaseolina soil inocula by more than 90%. Combination of solarization with organic manures (biosolarization) reduced Fusarium spp. soil populations by 80% and M. phaseolina by 79%. Reductions in plant mortality and increases in fruit yields over the untreated controls did not differ between chemically fumigated and biosolarized plots. (4) Conclusions: Soil fungal pathogens are effectively controlled by chemical fumigation of soils in intensive strawberry crops in Spain. In the case of mixed infestations of SFP with nematodes, the most efficient treatment in suppressing soil-borne diseases was soil fumigation with 1,3-dichloropropene:chloropicrin, but other alternative chemicals, such as allyl isothiocyanate, dazomet, and dimethyl disulfide, provided high efficacies in reducing the SFP inocula. Soil biosolarization is proposed as an effective alternative to chemical soil fumigation for strawberry cultivation in Southern Spain when SFP inocula is not remarkably high.


HortScience ◽  
2020 ◽  
Vol 55 (12) ◽  
pp. 2023-2027
Author(s):  
Mary C. Stevens ◽  
Rui Yang ◽  
Joshua H. Freeman

A novel methyl bromide alternative, ethanedinitrile (EDN), has been reported to be efficacious against soil-borne pathogens, weeds, and plant-parasitic nematodes. Degradation products of EDN include NH4+and NH3, but it is currently unknown at what quantities these degradation products are being released into the soil at a given use rate of EDN. To address this issue, field studies were performed using the raised-bed plasticulture system. Deposition of NH4+ and NO3− in top 0–15-, 15–30-, and 30–45-cm soils were evaluated 3 weeks after fumigation with EDN applied at 336, 448, and 560 kg·ha−1. Change of pH and transformation of NH4+ to NO3− in top 0–15- and 15–30-cm soils were tracked weekly after fumigation with EDN at 448 kg·ha−1 for 10 weeks. This study found that fumigation with EDN significantly increased soil pH of the top 0–15-cm soil and soil NH4+ in top 0–15- and 15–30-cm soils, but soil NO3− was unaffected. Nitrification process in top 0–15-cm soil was inhibited by fumigation with EDN for at least 7 weeks. These results indicate that N deposited by fumigation with EDN could be an important preplant N source for crop production, and the inhibition of nitrification could help mitigate nitrate leaching. This study provides helpful information for quantification of N deposited from fumigation with EDN.


Sign in / Sign up

Export Citation Format

Share Document