scholarly journals A robust LU polynomial matrix decomposition for spatial multiplexing

Author(s):  
Moustapha Mbaye ◽  
Moussa Diallo ◽  
Mamadou Mboup

Abstract This paper considers time-domain spatial multiplexing in MIMO wideband system, using an LU-based polynomial matrix decomposition. Because the corresponding pre- and post-filters are not paraunitary, the noise output power is amplified and the performance of the system is degraded, compared to QR-based spatial multiplexing approach. Degradations are important as the post-filter polynomial matrix is ill-conditioned. In this paper, we introduce simple transformations on the decomposition that solve the ill-conditioning problem. We show that this results in a MIMO spatial multiplexing scheme that is robust to noise and channel estimation errors. In the latter context, the proposed LU-based beamforming compares favorably to the QR-based counterpart in terms of complexity and bit error rate.

2020 ◽  
Author(s):  
Moustapha Mbaye ◽  
Moussa Diallo ◽  
Mamadou Mboup

Abstract This paper considers time-domain spatial multiplexing in MIMO wideband system, using an LU-based polynomial matrix decomposition. Because the corresponding pre- and post-filters are not paraunitary, the noise output power is amplified and the performance of the system is degraded, compared to QR-based spatial multiplexing approach. Degradations are important as the post-filter polynomial matrix is ill-conditioned. In this paper, we introduce simple transformations on the decomposition that solve the ill-conditioning problem. We show that this results in a MIMO spatial multiplexing scheme that is robust to noise and channel estimation errors. In the latter context, the proposed LU-based beamforming compares favorably to the QR-based counterpart in terms of complexity and bit error rate.


Sign in / Sign up

Export Citation Format

Share Document