scholarly journals Shortest link scheduling in wireless networks under the Rayleigh fading model

Author(s):  
Baogui Huang ◽  
Jiguo Yu ◽  
Chunmei Ma ◽  
Fengyin Li ◽  
Guangshun Li

AbstractMany shortest link scheduling algorithms adopt non-fading SINR interference model, which assumes that the received signal power will always remain determinate as long as the transmission power of the corresponding sender is fixed. In fact, because environment always influences the propagation of radio signals, the received signal power is by no means a certain value. Rayleigh fading is a statistical model for radio signals propagation. It assumes that the strength of a signal on a receiver is a random variable, varying with the Rayleigh distribution. This paper proposes a shortest link scheduling algorithm under the Rayleigh fading model (SLSRF). The SLSRF partitions the wireless network area into hexagons and colors the hexagons with three different colors such that two neighboring hexagons have different colors. The senders of the links scheduled simultaneously are arranged in hexagons with the same color. The correctness of the SLSRF is proved through theoretical analysis, and the efficiency is illustrated by elaborate simulations. Our simulation results demonstrate that the schedule delay of SLSRF is less than that of some results under the non-fading SINR interference model. Furthermore, we extend the SLSRF to a distributed version, which is suitable for large wireless networks.

2021 ◽  
Author(s):  
Baogui Huang ◽  
Jiguo Yu ◽  
Chunmei Ma ◽  
Fengyin Li ◽  
Guangshun Li

Abstract Many shortest link scheduling algorithms adopt non-fading SINR interference model, which assumes that the received signal power will always remain determinate as long as the transmission power of the corresponding sender is fixed. In fact, because environment always influences the propagation of radio signals, the received signal power is by no means a certain value. Rayleigh fading is a statistical model for radio signals propagation. It assumes that the strength of a signal on a receiver is a random variable, varying with the Rayleigh distribution. This paper proposes a shortest link scheduling algorithm under the Rayleigh fading model (SLSRF). The SLSRF partitions the wireless network area into hexagons and colors the hexagons with 3 different colors such that two neighboring hexagons have different colors. The senders of the links scheduled simultaneously are arranged in hexagons with the same color. The correctness of the SLSRF is proved through theoretical analysis, and the efficiency is illustrated by elaborate simulations. Our simulation results demonstrate that the schedule delay of SLSRF is less than that of some results under the non-fading SINR interference model. Furthermore, we extend the SLSRF to a distributed version, which is suitable for large wireless networks.


2020 ◽  
Vol 19 (8) ◽  
pp. 5621-5634 ◽  
Author(s):  
Jiguo Yu ◽  
Kan Yu ◽  
Dongxiao Yu ◽  
Weifeng Lv ◽  
Xiuzhen Cheng ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Junhua Wu ◽  
Dandan Lin ◽  
Guangshun Li ◽  
Yuncui Liu ◽  
Yanmin Yin

The performance of multiple input multiple output (MIMO) wireless networks is limited mainly by concurrent interference among sensor nodes. Effective link scheduling algorithms with the technology of successive interference cancellation (SIC) can maximize throughput in MIMO wireless networks. Most previous works on link scheduling in MIMO wireless networks did not consider SIC. In this paper, we propose a MIMO-SIC (MSIC) algorithm under the SINR model. First, a mathematical framework is established for the cross-layer optimization of routing and scheduling, with constraints of traffic balance and link capacity. Second, the interference regions are divided to characterize the level of interference between links. Finally, we propose a distributed link scheduling algorithm based on MSIC to eliminate the interference between competing links in the MIMO network. Experimental results show that the MSIC algorithm can increase the end-to-end throughput per unit by approximately 73% on average compared with non-SIC algorithms.


2020 ◽  
Vol 53 (2) ◽  
pp. 8231-8236
Author(s):  
Gustavo P. Cainelli ◽  
Max Feldman ◽  
Gustavo Künzel ◽  
Ivan Müller ◽  
Carlos E. Pereira ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3500 ◽  
Author(s):  
Zhi-Jiang Xu ◽  
Fang-Ni Chen ◽  
Yuan Wu ◽  
Yi Gong

For secure transmission of low cost single antenna communication nodes in wireless crowdsensing networks under static channel, a physical layer communication scheme is proposed, where each digital modulated symbol is encrypted by a random key at the transmitter and decrypted with the same key at the receiver. The legal users exploit the synchronized chaotic sequence and the two-stage block interleaver to generate a complex random variable (random key), whereby its envelope obeys the Rayleigh distribution and its phase obeys the uniformly distribution. The modulated symbol is multiplied by the complex random variable (encryption) to imitate the Rayleigh fading of the channel at the transmitting end. The received symbol is divided by the identical complex random variable (decryption) to recover the transmitted message before the digital demodulation at the receiving end. Simulation results show that the bit error ratio (BER) performance of the legitimate users is consistent with the theoretical value of the Rayleigh fading channel, while the corresponding BER of the eavesdropper is too high (about 0.5) to intercept any information.


Sign in / Sign up

Export Citation Format

Share Document