interference model
Recently Published Documents


TOTAL DOCUMENTS

397
(FIVE YEARS 56)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Author(s):  
◽  
Ying Qu

<p>IEEE 802.11Wireless backhaul networks (WBNs) provide scalable and cost-effective solutions for interconnecting small-cell networks and backbone networks or Internet. With newer and farther reaching applications being developed in IEEE 802.11 WBNs, such as smart grids and intelligent transportation systems, users expect high goodput and better fairness. However, some performance issues in IEEE 802.11 protocols such as border effect, exposed nodes and hidden nodes are exacerbated as network densification occurs, leading to goodput degradation and severe unfairness such as flow starvation (extreme low goodput). These issues may cause an IEEE 802.11 WBN to form a bottleneck and impact the overall network performance. Therefore, in-depth study is required in order to improve the IEEE 802.11 WBN planning to achieve better goodput and fairness.  This research aims to improve IEEE 802.11 WBN planning through goodput modelling and optimising channel assignment. A novel simple goodput distribution model is proposed to predict goodput and fairness in IEEE 802.11 WBNs. Simulation results show that the proposed goodput model accurately predicts goodput with consideration of carrier sensing effect and traffic demands. Based on this goodput model, a new interference model is proposed to more realistically reflect both local and global interference in IEEE 802.11 WBNs. With the proposed interference model, two anti-starvation channel assignments have been developed to prevent flow starvation. Simulation validations show that the new anti-starvation channel assignments effectively prevent flow starvation and improve network fairness in IEEE 802.11 WBNs.  This research also optimises channel assignment to achieve desired fairness and goodput. A multi-objective optimisation problem is formulated and a new fitness function is designed to evaluate a channel allocation with accurate prediction of goodput and fairness. Utilising the new fitness function, two multi-objective channel assignments have been developed to achieve both fairness and goodput. Compared with existing channel assignments through simulation, the proposed multi-objective channel assignments provide a set of feasible solutions that meet desired fairness and goodput.  This research helps network planners or service providers to improve the IEEE 802.11 WBN planning from predicting network performance to optimising goodput and fairness. The proposed goodput model, interference model, and fitness function are also useful for node placement, and optimising routing and scheduling in IEEE 802.11 WBNs.</p>


2021 ◽  
Author(s):  
◽  
Ying Qu

<p>IEEE 802.11Wireless backhaul networks (WBNs) provide scalable and cost-effective solutions for interconnecting small-cell networks and backbone networks or Internet. With newer and farther reaching applications being developed in IEEE 802.11 WBNs, such as smart grids and intelligent transportation systems, users expect high goodput and better fairness. However, some performance issues in IEEE 802.11 protocols such as border effect, exposed nodes and hidden nodes are exacerbated as network densification occurs, leading to goodput degradation and severe unfairness such as flow starvation (extreme low goodput). These issues may cause an IEEE 802.11 WBN to form a bottleneck and impact the overall network performance. Therefore, in-depth study is required in order to improve the IEEE 802.11 WBN planning to achieve better goodput and fairness.  This research aims to improve IEEE 802.11 WBN planning through goodput modelling and optimising channel assignment. A novel simple goodput distribution model is proposed to predict goodput and fairness in IEEE 802.11 WBNs. Simulation results show that the proposed goodput model accurately predicts goodput with consideration of carrier sensing effect and traffic demands. Based on this goodput model, a new interference model is proposed to more realistically reflect both local and global interference in IEEE 802.11 WBNs. With the proposed interference model, two anti-starvation channel assignments have been developed to prevent flow starvation. Simulation validations show that the new anti-starvation channel assignments effectively prevent flow starvation and improve network fairness in IEEE 802.11 WBNs.  This research also optimises channel assignment to achieve desired fairness and goodput. A multi-objective optimisation problem is formulated and a new fitness function is designed to evaluate a channel allocation with accurate prediction of goodput and fairness. Utilising the new fitness function, two multi-objective channel assignments have been developed to achieve both fairness and goodput. Compared with existing channel assignments through simulation, the proposed multi-objective channel assignments provide a set of feasible solutions that meet desired fairness and goodput.  This research helps network planners or service providers to improve the IEEE 802.11 WBN planning from predicting network performance to optimising goodput and fairness. The proposed goodput model, interference model, and fitness function are also useful for node placement, and optimising routing and scheduling in IEEE 802.11 WBNs.</p>


2021 ◽  
Vol 10 (2) ◽  
pp. 257-264
Author(s):  
Zhijian Zhou ◽  
Zhilong Liu ◽  
Wenduo Li ◽  
Yihang Wang ◽  
Chao Wang

Abstract. Aeromagnetic exploration is an important method of geophysical exploration. We study the compensation method of the towed bird system and establish the towed bird interference model. Due to the geomagnetic gradient changing greatly, the geomagnetic gradient is considered in the towed bird interference model. In this paper, we model the geomagnetic field gradient and analyze the influence of the towed bird system on the aeromagnetic compensation results. Finally, we apply the ridge regression method to solve the problem. We verify the feasibility of this compensation method through actual flight tests and further improve the data quality of the towed bird interference.


2021 ◽  
Vol 17 (4) ◽  
pp. 1-34
Author(s):  
Quan Chen ◽  
Zhipeng Cai ◽  
Lianglun Cheng ◽  
Hong Gao ◽  
Jianzhong Li

The emerging energy-harvesting technology enables charging sensor batteries with renewable energy sources, which has been effectively integrated into Wireless Sensor Networks (EH-WSNs). Due to the limited energy-harvesting capacities of tiny sensors, the captured energy remains scarce and differs greatly among nodes, which makes the data aggregation scheduling problem more challenging than that in energy-abundant WSNs. In this article, we investigate the Minimum Latency Aggregation Scheduling (MLAS) problem in EH-WSNs. First, we identify a new kind of collision in EH-WSNs, named as energy-collision, and design several special structures to avoid it during data aggregation. To reduce the latency, we try to choose the parent adaptively according to nodes’ transmission tasks and energy-harvesting ability, under the consideration of collisions avoidance. By considering transmitting time, residual energy, and energy-collision, three scheduling algorithms are proposed under protocol interference model. Under physical interference model, several approximate algorithms are also designed by taking account of the interference from the nodes several hops away. Finally, the theoretical analysis and simulation results verify that the proposed algorithms have high performance in terms of latency.


2021 ◽  
Author(s):  
Zhijian Zhou ◽  
Zhilong Liu ◽  
Wenduo Li ◽  
Yihang Wang ◽  
Chao Wang

Abstract. Aeromagnetic exploration is an important method of geophysical exploration. We study the compensation method of towed bird system and establish the towed bird interference model. Due to the low altitude of the helicopter, the geomagnetic gradient changes greatly, so the geomagnetic gradient is considered in the towed bird interference model. In this paper, we model the gradient of the geomagnetic field as vertical gradient and horizontal gradient components, analyze the influence of the towed bird system on the compensation results under different motion modes, and apply the ridge estimation method to solve the problem. We verify the feasibility of this compensation method through actual flight tests, and further improve the data quality of the towed bird interference.


Author(s):  
Baogui Huang ◽  
Jiguo Yu ◽  
Chunmei Ma ◽  
Fengyin Li ◽  
Guangshun Li

AbstractMany shortest link scheduling algorithms adopt non-fading SINR interference model, which assumes that the received signal power will always remain determinate as long as the transmission power of the corresponding sender is fixed. In fact, because environment always influences the propagation of radio signals, the received signal power is by no means a certain value. Rayleigh fading is a statistical model for radio signals propagation. It assumes that the strength of a signal on a receiver is a random variable, varying with the Rayleigh distribution. This paper proposes a shortest link scheduling algorithm under the Rayleigh fading model (SLSRF). The SLSRF partitions the wireless network area into hexagons and colors the hexagons with three different colors such that two neighboring hexagons have different colors. The senders of the links scheduled simultaneously are arranged in hexagons with the same color. The correctness of the SLSRF is proved through theoretical analysis, and the efficiency is illustrated by elaborate simulations. Our simulation results demonstrate that the schedule delay of SLSRF is less than that of some results under the non-fading SINR interference model. Furthermore, we extend the SLSRF to a distributed version, which is suitable for large wireless networks.


2021 ◽  
Author(s):  
Baogui Huang ◽  
Jiguo Yu ◽  
Chunmei Ma ◽  
Fengyin Li ◽  
Guangshun Li

Abstract Many shortest link scheduling algorithms adopt non-fading SINR interference model, which assumes that the received signal power will always remain determinate as long as the transmission power of the corresponding sender is fixed. In fact, because environment always influences the propagation of radio signals, the received signal power is by no means a certain value. Rayleigh fading is a statistical model for radio signals propagation. It assumes that the strength of a signal on a receiver is a random variable, varying with the Rayleigh distribution. This paper proposes a shortest link scheduling algorithm under the Rayleigh fading model (SLSRF). The SLSRF partitions the wireless network area into hexagons and colors the hexagons with 3 different colors such that two neighboring hexagons have different colors. The senders of the links scheduled simultaneously are arranged in hexagons with the same color. The correctness of the SLSRF is proved through theoretical analysis, and the efficiency is illustrated by elaborate simulations. Our simulation results demonstrate that the schedule delay of SLSRF is less than that of some results under the non-fading SINR interference model. Furthermore, we extend the SLSRF to a distributed version, which is suitable for large wireless networks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Antonios Georgiou ◽  
Mikhail Katkov ◽  
Misha Tsodyks

AbstractMemory and forgetting constitute two sides of the same coin, and although the first has been extensively investigated, the latter is often overlooked. A possible approach to better understand forgetting is to develop phenomenological models that implement its putative mechanisms in the most elementary way possible, and then experimentally test the theoretical predictions of these models. One such mechanism proposed in previous studies is retrograde interference, stating that a memory can be erased due to subsequently acquired memories. In the current contribution, we hypothesize that retrograde erasure is controlled by the relevant “importance” measures such that more important memories eliminate less important ones acquired earlier. We show that some versions of the resulting mathematical model are broadly compatible with the previously reported power-law forgetting time course and match well the results of our recognition experiments with long, randomly assembled streams of words.


Sign in / Sign up

Export Citation Format

Share Document