scholarly journals A natural Frenet frame for null curves on the lightlike cone in Minkowski space $\mathbb{R} ^{4}_{2}$

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Nemat Abazari ◽  
Martin Bohner ◽  
Ilgin Sağer ◽  
Alireza Sedaghatdoost ◽  
Yusuf Yayli

Abstract In this paper, we investigate the representation of curves on the lightlike cone $\mathbb {Q}^{3}_{2}$ Q 2 3 in Minkowski space $\mathbb {R}^{4}_{2}$ R 2 4 by structure functions. In addition, with this representation, we classify all of the null curves on the lightlike cone $\mathbb {Q}^{3}_{2}$ Q 2 3 in four types, and we obtain a natural Frenet frame for these null curves. Furthermore, for this natural Frenet frame, we calculate curvature functions of a null curve, especially the curvature function $\kappa _{2}=0$ κ 2 = 0 , and we show that any null curve on the lightlike cone is a helix. Finally, we find all curves with constant curvature functions.

Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 56 ◽  
Author(s):  
Jinhua Qian ◽  
Xueqian Tian ◽  
Jie Liu ◽  
Young Ho Kim

In Lorentz–Minkowski space, the angles between any two non-null vectors have been defined in the sense of the angles in Euclidean space. In this work, the angles relating to lightlike vectors are characterized by the Frenet frame of a pseudo null curve and the angles between any two non-null vectors in Minkowski 3-space. Meanwhile, the explicit measuring methods are demonstrated through several examples.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Esra Betul Koc Ozturk

With the help of the Frenet frame of a given pseudo null curve, a family of parametric surfaces is expressed as a linear combination of this frame. The necessary and sufficient conditions are examined for that curve to be an isoparametric and asymptotic on the parametric surface. It is shown that there is not any cylindrical and developable ruled surface as a parametric surface. Also, some interesting examples are illustrated about these surfaces.


2020 ◽  
Vol 5 (1) ◽  
pp. 237-248
Author(s):  
Muhammad Abubakar Isah ◽  
Mihriban Alyamaç Külahçı

AbstractPseudo null curves were studied by some geometers in both Euclidean and Minkowski spaces, but some special characters of the curve are not considered. In this paper, we study weak AW (k) – type and AW (k) – type pseudo null curve in Minkowski 3-space [E_1^3 . We define helix and slant helix according to Bishop frame in [E_1^3 . Furthermore, the necessary and sufficient conditions for the slant helix and helix in Minkowski 3-space are obtained.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
José del Amor ◽  
Ángel Giménez ◽  
Pascual Lucas

We define a Lie bracket on a certain set of local vector fields along a null curve in a 4-dimensional semi-Riemannian space form. This Lie bracket will be employed to study integrability properties of evolution equations for null curves in a pseudo-Euclidean space. In particular, a geometric recursion operator generating infinitely many local symmetries for the null localized induction equation is provided.


2019 ◽  
Vol 16 (05) ◽  
pp. 1950076 ◽  
Author(s):  
Rafael López ◽  
Željka Milin Šipuš ◽  
Ljiljana Primorac Gajčić ◽  
Ivana Protrka

In this paper, we study harmonic evolutes of [Formula: see text]-scrolls, that is, of ruled surfaces in Lorentz–Minkowski space having no Euclidean counterparts. Contrary to Euclidean space where harmonic evolutes of surfaces are surfaces again, harmonic evolutes of [Formula: see text]-scrolls turn out to be curves. In particular, we show that the harmonic evolute of a [Formula: see text]-scroll of constant mean curvature together with its base curve forms a null Bertrand pair. This allows us to characterize [Formula: see text]-scrolls of constant mean curvature and reconstruct them from a given null curve which is their harmonic evolute.


2001 ◽  
Vol 16 (30) ◽  
pp. 4845-4863 ◽  
Author(s):  
ANGEL FERRÁNDEZ ◽  
ANGEL GIMÉNEZ ◽  
PASCUAL LUCAS

In this paper we introduce a reference along a null curve in an n-dimensional Lorentzian space with the minimum number of curvatures. That reference generalizes the reference of Bonnor for null curves in Minkowski space–time and it is called the Cartan frame of the curve. The associated curvature functions are called the Cartan curvatures of the curve. We characterize the null helices (that is, null curves with constant Cartan curvatures) in n-dimensional Lorentzian space forms and we obtain a complete classification of them in low dimensions.


2016 ◽  
Vol 13 (06) ◽  
pp. 1650077 ◽  
Author(s):  
Milica Grbović ◽  
Emilija Nešović

In this paper, we introduce Bäcklund transformation of a pseudo null curve in Minkowski 3-space as a transformation mapping a pseudo null helix to another pseudo null helix congruent to the given one. We also give the sufficient conditions for a transformation between two pseudo null curves in the Minkowski 3-space such that these curves have equal constant torsions. By using the Da Rios vortex filament equation, based on localized induction approximation (LIA), we derive the vortex filament equation for a pseudo null curve and prove that the evolution equation for the torsion is the viscous Burger’s equation. As an application, we show that pseudo null curves and their Frenet frames generate solutions of the Da Rios vortex filament equation.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Talat Körpinar

We construct a new method for inextensible flows of timelike curves in Minkowski space-time E14. Using the Frenet frame of the given curve, we present partial differential equations. We give some characterizations for curvatures of a timelike curve in Minkowski space-time E14.


2009 ◽  
Vol 85 (99) ◽  
pp. 111-118 ◽  
Author(s):  
Kazim İlarslan ◽  
Emilija Nesovic

We define normal curves in Minkowski space-time E41. In particular, we characterize the spacelike normal curves in E41 whose Frenet frame contains only non-null vector fields, as well as the timelike normal curves in E41 , in terms of their curvature functions. Moreover, we obtain an explicit equation of such normal curves with constant curvatures.


Sign in / Sign up

Export Citation Format

Share Document