scholarly journals A New Angular Measurement in Minkowski 3-Space

Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 56 ◽  
Author(s):  
Jinhua Qian ◽  
Xueqian Tian ◽  
Jie Liu ◽  
Young Ho Kim

In Lorentz–Minkowski space, the angles between any two non-null vectors have been defined in the sense of the angles in Euclidean space. In this work, the angles relating to lightlike vectors are characterized by the Frenet frame of a pseudo null curve and the angles between any two non-null vectors in Minkowski 3-space. Meanwhile, the explicit measuring methods are demonstrated through several examples.

2019 ◽  
Vol 16 (05) ◽  
pp. 1950076 ◽  
Author(s):  
Rafael López ◽  
Željka Milin Šipuš ◽  
Ljiljana Primorac Gajčić ◽  
Ivana Protrka

In this paper, we study harmonic evolutes of [Formula: see text]-scrolls, that is, of ruled surfaces in Lorentz–Minkowski space having no Euclidean counterparts. Contrary to Euclidean space where harmonic evolutes of surfaces are surfaces again, harmonic evolutes of [Formula: see text]-scrolls turn out to be curves. In particular, we show that the harmonic evolute of a [Formula: see text]-scroll of constant mean curvature together with its base curve forms a null Bertrand pair. This allows us to characterize [Formula: see text]-scrolls of constant mean curvature and reconstruct them from a given null curve which is their harmonic evolute.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Nemat Abazari ◽  
Martin Bohner ◽  
Ilgin Sağer ◽  
Alireza Sedaghatdoost ◽  
Yusuf Yayli

Abstract In this paper, we investigate the representation of curves on the lightlike cone $\mathbb {Q}^{3}_{2}$ Q 2 3 in Minkowski space $\mathbb {R}^{4}_{2}$ R 2 4 by structure functions. In addition, with this representation, we classify all of the null curves on the lightlike cone $\mathbb {Q}^{3}_{2}$ Q 2 3 in four types, and we obtain a natural Frenet frame for these null curves. Furthermore, for this natural Frenet frame, we calculate curvature functions of a null curve, especially the curvature function $\kappa _{2}=0$ κ 2 = 0 , and we show that any null curve on the lightlike cone is a helix. Finally, we find all curves with constant curvature functions.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Esra Betul Koc Ozturk

With the help of the Frenet frame of a given pseudo null curve, a family of parametric surfaces is expressed as a linear combination of this frame. The necessary and sufficient conditions are examined for that curve to be an isoparametric and asymptotic on the parametric surface. It is shown that there is not any cylindrical and developable ruled surface as a parametric surface. Also, some interesting examples are illustrated about these surfaces.


2018 ◽  
Vol 11 (04) ◽  
pp. 1850061
Author(s):  
Filiz Ertem Kaya ◽  
Ayşe Yavuz

This study aimed to give definitions and relations between strip theory and harmonic curvatures of the strip in Minkowski space. Previously, the same was done in Euclidean Space (see [F. Ertem Kaya, Y. Yayli and H. H. Hacısalihoglu, A characterization of cylindrical helix strip, Commun. Fac. Sci. Univ. Ank. Ser. A1 59(2) (2010) 37–51]). The present paper gives for the first time a generic characterization of the harmonic curvatures of the strip, helix strip and inclined strip in Minkowski space.


1986 ◽  
Vol 64 (5) ◽  
pp. 633-636 ◽  
Author(s):  
Alan Chodos ◽  
Eric Myers

Use of the surrogate zeta-function method was crucial in calculating the Casimir energy in non-Abelian Kaluza–Klein theories. We establish the validity of this method for the case where the background metric is (Euclidean space) × (N sphere). Our techniques do not apply to the case where the background is (Minkowski space) × (N sphere).


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1211 ◽  
Author(s):  
Rafael López

We investigate the differences and similarities of the Dirichlet problem of the mean curvature equation in the Euclidean space and in the Lorentz-Minkowski space. Although the solvability of the Dirichlet problem follows standards techniques of elliptic equations, we focus in showing how the spacelike condition in the Lorentz-Minkowski space allows dropping the hypothesis on the mean convexity, which is required in the Euclidean case.


Author(s):  
Yan-Qing Ma ◽  
Jian-Wei Qiu

In this talk, we review a QCD factorization based approach to extract parton distribution and correlation functions from lattice QCD calculation of single hadron matrix elements of quark-gluon operators. We argue that although the lattice QCD calculations are done in the Euclidean space, the nonperturbative collinear behavior of the matrix elements are the same as that in the Minkowski space, and could be systematically factorized into parton distribution functions with infrared safe matching coefficients. The matching coefficients can be calculated perturbatively by applying the factorization formalism on to asymptotic partonic states.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Talat Körpinar

We construct a new method for inextensible flows of timelike curves in Minkowski space-time E14. Using the Frenet frame of the given curve, we present partial differential equations. We give some characterizations for curvatures of a timelike curve in Minkowski space-time E14.


2009 ◽  
Vol 85 (99) ◽  
pp. 111-118 ◽  
Author(s):  
Kazim İlarslan ◽  
Emilija Nesovic

We define normal curves in Minkowski space-time E41. In particular, we characterize the spacelike normal curves in E41 whose Frenet frame contains only non-null vector fields, as well as the timelike normal curves in E41 , in terms of their curvature functions. Moreover, we obtain an explicit equation of such normal curves with constant curvatures.


Sign in / Sign up

Export Citation Format

Share Document