scholarly journals Qualitative analysis and sensitivity based optimal control of pine wilt disease

2018 ◽  
Vol 2018 (1) ◽  
Author(s):  
Aziz Ullah Awan ◽  
Takasar Hussain ◽  
Kazeem Oare Okosun ◽  
Muhammad Ozair
2021 ◽  
Vol 46 (4) ◽  
Author(s):  
Muhammad Ozair ◽  
Takasar Hussain ◽  
Kashif Ali Abro ◽  
Sajid Jameel ◽  
Aziz Ullah Awan

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Altaf Khan ◽  
L. Ahmed ◽  
Prashanta Kumar Mandal ◽  
Robert Smith ◽  
Mainul Haque

2019 ◽  
Vol 356 (7) ◽  
pp. 3991-4025 ◽  
Author(s):  
Ravi P. Agarwal ◽  
Qaisar Badshah ◽  
Ghaus ur Rahman ◽  
Saeed Islam

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
M. A. Khan ◽  
K. Ali ◽  
E. Bonyah ◽  
K. O. Okosun ◽  
S. Islam ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Kwang Sung Lee

We propose a mathematical model of pine wilt disease (PWD) which is caused by pine sawyer beetles carrying the pinewood nematode (PWN). We calculate the basic reproduction numberR0and investigate the stability of a disease-free and endemic equilibrium in a given mathematical model. We show that the stability of the equilibrium in the proposed model can be controlled through the basic reproduction numberR0. We then discuss effective optimal control strategies for the proposed PWD mathematical model. We demonstrate the existence of a control problem, and then we apply both analytical and numerical techniques to demonstrate effective control methods to prevent the transmission of the PWD. In order to do this, we apply two control strategies: tree-injection of nematicide and the eradication of adult beetles through aerial pesticide spraying. Optimal prevention strategies can be determined by solving the corresponding optimality system. Numerical simulations of the optimal control problem using a set of reasonable parameter values suggest that reducing the number of pine sawyer beetles is more effective than the tree-injection strategy for controlling the spread of PWD.


2021 ◽  
Vol 136 (7) ◽  
Author(s):  
Takasar Hussain ◽  
Muhammad Ozair ◽  
Muhammad Faizan ◽  
Sajid Jameel ◽  
Kottakkaran Sooppy Nisar

1988 ◽  
Vol 54 (5) ◽  
pp. 606-615 ◽  
Author(s):  
Keiko KURODA ◽  
Toshihiro YAMADA ◽  
Kazuhiko MINEO ◽  
Hirotada TAMURA

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Run Yu ◽  
Lili Ren ◽  
Youqing Luo

Abstract Background Pine wilt disease (PWD) is a major ecological concern in China that has caused severe damage to millions of Chinese pines (Pinus tabulaeformis). To control the spread of PWD, it is necessary to develop an effective approach to detect its presence in the early stage of infection. One potential solution is the use of Unmanned Airborne Vehicle (UAV) based hyperspectral images (HIs). UAV-based HIs have high spatial and spectral resolution and can gather data rapidly, potentially enabling the effective monitoring of large forests. Despite this, few studies examine the feasibility of HI data use in assessing the stage and severity of PWD infection in Chinese pine. Method To fill this gap, we used a Random Forest (RF) algorithm to estimate the stage of PWD infection of trees sampled using UAV-based HI data and ground-based data (data directly collected from trees in the field). We compared relative accuracy of each of these data collection methods. We built our RF model using vegetation indices (VIs), red edge parameters (REPs), moisture indices (MIs), and their combination. Results We report several key results. For ground data, the model that combined all parameters (OA: 80.17%, Kappa: 0.73) performed better than VIs (OA: 75.21%, Kappa: 0.66), REPs (OA: 79.34%, Kappa: 0.67), and MIs (OA: 74.38%, Kappa: 0.65) in predicting the PWD stage of individual pine tree infection. REPs had the highest accuracy (OA: 80.33%, Kappa: 0.58) in distinguishing trees at the early stage of PWD from healthy trees. UAV-based HI data yielded similar results: the model combined VIs, REPs and MIs (OA: 74.38%, Kappa: 0.66) exhibited the highest accuracy in estimating the PWD stage of sampled trees, and REPs performed best in distinguishing healthy trees from trees at early stage of PWD (OA: 71.67%, Kappa: 0.40). Conclusion Overall, our results confirm the validity of using HI data to identify pine trees infected with PWD in its early stage, although its accuracy must be improved before widespread use is practical. We also show UAV-based data PWD classifications are less accurate but comparable to those of ground-based data. We believe that these results can be used to improve preventative measures in the control of PWD.


Sign in / Sign up

Export Citation Format

Share Document