scholarly journals Synchronisation of two different uncertain fractional-order chaotic systems with unknown parameters using a modified adaptive sliding-mode controller

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
A. Othman Almatroud
2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Zengyun Wang ◽  
Lihong Huang ◽  
Xuxin Yang ◽  
Dingyang Lu

This paper investigates the problem of synchronization for two different stochastic chaotic systems with unknown parameters and uncertain terms. The main work of this paper consists of the following aspects. Firstly, based on the Lyapunov theory in stochastic differential equations and the theory of sliding mode control, we propose a simple sliding surface and discuss the occurrence of the sliding motion. Secondly, we design an adaptive sliding mode controller to realize the asymptotical synchronization in mean squares. Thirdly, we design an adaptive sliding mode controller to realize the almost surely synchronization. Finally, the designed adaptive sliding mode controllers are used to achieve synchronization between two pairs of different stochastic chaos systems (Lorenz-Chen and Chen-Lu) in the presence of the uncertainties and unknown parameters. Numerical simulations are given to demonstrate the robustness and efficiency of the proposed robust adaptive sliding mode controller.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Zahra Rashidnejad Heydari ◽  
Paknosh Karimaghaee

AbstractThis paper introduces the projective synchronization of different fractional-order multiple chaotic systems with uncertainties, disturbances, unknown parameters, and input nonlinearities. A fractional adaptive sliding surface is suggested to guarantee that more slave systems synchronize with one master system. First, an adaptive sliding mode controller is proposed for the synchronization of fractional-order multiple chaotic systems with unknown parameters and disturbances. Then, the synchronization of fractional-order multiple chaotic systems in the presence of uncertainties and input nonlinearity is obtained. The developed method can be used for many of fractional-order multiple chaotic systems. The bounds of the uncertainties and disturbances are unknown. Suitable adaptive rules are established to overcome the unknown parameters. Based on the fractional Lyapunov theorem, the stability of the suggested technique is proved. Finally, the simulation results demonstrate the feasibility and robustness of our suggested scheme.


Sign in / Sign up

Export Citation Format

Share Document