Synchronization on the adaptive sliding mode controller for fractional order complex chaotic systems with uncertainty and disturbances

2019 ◽  
Vol 7 (4) ◽  
pp. 1419-1433 ◽  
Author(s):  
Ayub Khan ◽  
Nasreen ◽  
Lone Seth Jahanzaib
Author(s):  
Hadi Delavari ◽  
Milad Mohadeszadeh

In this paper, a robust adaptive sliding mode controller is proposed. Under the existence of external disturbances, modified hybrid projective synchronization (MHPS) between two identical and two nonidentical fractional-order complex chaotic systems is achieved. It is shown that the response system could be synchronized with the drive system up to a nondiagonal scaling matrix. An adaptive controller and parameter update laws are investigated based on the Lyapunov stability theorem. The closed-loop stability conditions are derived based on the fractional-order Lyapunov function and Mittag-Leffler function. Finally, numerical simulations are given to verify the theoretical analysis.


2020 ◽  
Vol 34 (07) ◽  
pp. 2050050 ◽  
Author(s):  
Fuzhong Nian ◽  
Xinmeng Liu ◽  
Yaqiong Zhang ◽  
Xuelong Yu

Combined with RBF neural network and sliding mode control, the synchronization between drive system and response system was achieved in module space and phase space, respectively (module-phase synchronization). The RBF neural network is used to estimate the unknown nonlinear function in the system. The module-phase synchronization of two fractional-order complex chaotic systems is implemented by the Lyapunov stability theory of fractional-order systems. Numerical simulations are provided to show the effectiveness of the analytical results.


Sign in / Sign up

Export Citation Format

Share Document