scholarly journals Multi-sensor fusion based on multiple classifier systems for human activity identification

Author(s):  
Henry Friday Nweke ◽  
Ying Wah Teh ◽  
Ghulam Mujtaba ◽  
Uzoma Rita Alo ◽  
Mohammed Ali Al-garadi

Abstract Multimodal sensors in healthcare applications have been increasingly researched because it facilitates automatic and comprehensive monitoring of human behaviors, high-intensity sports management, energy expenditure estimation, and postural detection. Recent studies have shown the importance of multi-sensor fusion to achieve robustness, high-performance generalization, provide diversity and tackle challenging issue that maybe difficult with single sensor values. The aim of this study is to propose an innovative multi-sensor fusion framework to improve human activity detection performances and reduce misrecognition rate. The study proposes a multi-view ensemble algorithm to integrate predicted values of different motion sensors. To this end, computationally efficient classification algorithms such as decision tree, logistic regression and k-Nearest Neighbors were used to implement diverse, flexible and dynamic human activity detection systems. To provide compact feature vector representation, we studied hybrid bio-inspired evolutionary search algorithm and correlation-based feature selection method and evaluate their impact on extracted feature vectors from individual sensor modality. Furthermore, we utilized Synthetic Over-sampling minority Techniques (SMOTE) algorithm to reduce the impact of class imbalance and improve performance results. With the above methods, this paper provides unified framework to resolve major challenges in human activity identification. The performance results obtained using two publicly available datasets showed significant improvement over baseline methods in the detection of specific activity details and reduced error rate. The performance results of our evaluation showed 3% to 24% improvement in accuracy, recall, precision, F-measure and detection ability (AUC) compared to single sensors and feature-level fusion. The benefit of the proposed multi-sensor fusion is the ability to utilize distinct feature characteristics of individual sensor and multiple classifier systems to improve recognition accuracy. In addition, the study suggests a promising potential of hybrid feature selection approach, diversity-based multiple classifier systems to improve mobile and wearable sensor-based human activity detection and health monitoring system.

2010 ◽  
Vol 7 (3) ◽  
pp. 346-362
Author(s):  
Matteo Rè ◽  
Giorgio Valentini

Summary The availability of various high-throughput experimental and computational methods developed in the last decade allowed molecular biologists to investigate the functions of genes at system level opening unprecedented research opportunities. Despite the automated prediction of genes functions could be included in the most difficult problems in bioinformatics, several recently published works showed that consistent improvements in prediction performances can be obtained by integrating heterogeneous data sources. Nevertheless, very few works have been dedicated to the investigation of the impact of noisy data on the prediction performances achievable by using data integration approaches.In this contribution we investigated the tolerance of multiple classifier systems (MCS) to noisy data in gene function prediction experiments based on data integration methods. The experimental results show that performances of MCS do not undergo a significant decay when noisy data sets are added. In addition, we show that in this task MCS are competitive with kernel fusion, one of the most widely applied technique for data integration in gene function prediction problems.


Author(s):  
SIMON GÜNTER ◽  
HORST BUNKE

Handwritten text recognition is one of the most difficult problems in the field of pattern recognition. In this paper, we describe our efforts towards improving the performance of state-of-the-art handwriting recognition systems through the use of classifier ensembles. There are many examples of classification problems in the literature where multiple classifier systems increase the performance over single classifiers. Normally one of the two following approaches is used to create a multiple classifier system. (1) Several classifiers are developed completely independent of each other and combined in a last step. (2) Several classifiers are created out of one prototype classifier by using so-called classifier ensemble creation methods. In this paper an algorithm which combines both approaches is introduced and it is used to increase the recognition rate of a hidden Markov model (HMM) based handwritten word recognizer.


Sensors ◽  
2012 ◽  
Vol 12 (6) ◽  
pp. 8039-8054 ◽  
Author(s):  
Oresti Banos ◽  
Miguel Damas ◽  
Hector Pomares ◽  
Ignacio Rojas

Author(s):  
ROMAN BERTOLAMI ◽  
HORST BUNKE

Current multiple classifier systems for unconstrained handwritten text recognition do not provide a straightforward way to utilize language model information. In this paper, we describe a generic method to integrate a statistical n-gram language model into the combination of multiple offline handwritten text line recognizers. The proposed method first builds a word transition network and then rescores this network with an n-gram language model. Experimental evaluation conducted on a large dataset of offline handwritten text lines shows that the proposed approach improves the recognition accuracy over a reference system as well as over the original combination method that does not include a language model.


Sign in / Sign up

Export Citation Format

Share Document