scholarly journals Solvability of a boundary value problem at resonance

SpringerPlus ◽  
2016 ◽  
Vol 5 (1) ◽  
Author(s):  
A. Guezane-Lakoud ◽  
R. Khaldi ◽  
A. Kılıçman
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
O. F. Imaga ◽  
S. A. Iyase

AbstractIn this work, we consider the solvability of a fractional-order p-Laplacian boundary value problem on the half-line where the fractional differential operator is nonlinear and has a kernel dimension equal to two. Due to the nonlinearity of the fractional differential operator, the Ge and Ren extension of Mawhin’s coincidence degree theory is applied to obtain existence results for the boundary value problem at resonance. Two examples are used to validate the established results.


2016 ◽  
Vol 56 (1) ◽  
pp. 143-153 ◽  
Author(s):  
Katarzyna Szymańska-Dębowska

Abstract This work is devoted to the existence of solutions for a system of nonlocal resonant boundary value problem $$\matrix{{x'' = f(t,x),} \hfill & {x'(0) = 0,} \hfill & {x'(1) = {\int_0^1 {x(s)dg(s)},} }} $$ where f : [0, 1] × ℝk → ℝk is continuous and g : [0, 1] → ℝk is a function of bounded variation.


1995 ◽  
Vol 18 (4) ◽  
pp. 705-710 ◽  
Author(s):  
Chaitan P. Gupta

Letf:[0,1]×R2→Rbe function satisfying Caratheodory's conditions ande(t)∈L1[0,1]. Letη∈(0,1),ξi∈(0,1),ai≥0,i=1,2,…,m−2, with∑i=1m−2ai=1,0<ξ1<ξ2<…<ξm−2<1be given. This paper is concerned with the problem of existence of a solution for the following boundary value problemsx″(t)=f(t,x(t),x′(t))+e(t),0<t<1,x′(0)=0,x(1)=x(η),x″(t)=f(t,x(t),x′(t))+e(t),0<t<1,x′(0)=0,x(1)=∑i=1m−2aix(ξi).Conditions for the existence of a solution for the above boundary value problems are given using Leray Schauder Continuation theorem.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Kareem Alanazi ◽  
Meshal Alshammari ◽  
Paul Eloe

Abstract A quasilinearization algorithm is developed for boundary value problems at resonance. To do so, a standard monotonicity condition is assumed to obtain the uniqueness of solutions for the boundary value problem at resonance. Then the method of upper and lower solutions and the shift method are applied to obtain the existence of solutions. A quasilinearization algorithm is developed and sequences of approximate solutions are constructed, which converge monotonically and quadratically to the unique solution of the boundary value problem at resonance. Two examples are provided in which explicit upper and lower solutions are exhibited.


Sign in / Sign up

Export Citation Format

Share Document