Quasilinearization and boundary value problems at resonance

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Kareem Alanazi ◽  
Meshal Alshammari ◽  
Paul Eloe

Abstract A quasilinearization algorithm is developed for boundary value problems at resonance. To do so, a standard monotonicity condition is assumed to obtain the uniqueness of solutions for the boundary value problem at resonance. Then the method of upper and lower solutions and the shift method are applied to obtain the existence of solutions. A quasilinearization algorithm is developed and sequences of approximate solutions are constructed, which converge monotonically and quadratically to the unique solution of the boundary value problem at resonance. Two examples are provided in which explicit upper and lower solutions are exhibited.

1995 ◽  
Vol 18 (4) ◽  
pp. 705-710 ◽  
Author(s):  
Chaitan P. Gupta

Letf:[0,1]×R2→Rbe function satisfying Caratheodory's conditions ande(t)∈L1[0,1]. Letη∈(0,1),ξi∈(0,1),ai≥0,i=1,2,…,m−2, with∑i=1m−2ai=1,0<ξ1<ξ2<…<ξm−2<1be given. This paper is concerned with the problem of existence of a solution for the following boundary value problemsx″(t)=f(t,x(t),x′(t))+e(t),0<t<1,x′(0)=0,x(1)=x(η),x″(t)=f(t,x(t),x′(t))+e(t),0<t<1,x′(0)=0,x(1)=∑i=1m−2aix(ξi).Conditions for the existence of a solution for the above boundary value problems are given using Leray Schauder Continuation theorem.


2016 ◽  
Vol 53 (1) ◽  
pp. 42-52
Author(s):  
Katarzyna Szymańska-Dȩbowska

The paper focuses on existence of solutions of a system of nonlocal resonant boundary value problems , where f : [0, 1] × ℝk → ℝk is continuous and g : [0, 1] → ℝk is a function of bounded variation. Imposing on the function f the following condition: the limit limλ→∞f(t, λ a) exists uniformly in a ∈ Sk−1, we have shown that the problem has at least one solution.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Qiao Sun ◽  
Yujun Cui

We investigate a (k,n-k) conjugate boundary value problem with integral boundary conditions. By using Mawhin continuation theorem, we study the solvability of this boundary value problem at resonance. It is shown that the boundary value problem (-1)n-kφ(n)(x)=fx,φx,φ′x,…,φ(n-1)(x), x∈[0,1], φ(i)(0)=φ(j)(1)=0, 1≤i≤k-1, 0≤j≤n-k-1, φ(0)=∫01φ(x)dA(x) has at least one solution under some suitable conditions.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
O. F. Imaga ◽  
S. A. Iyase

AbstractIn this work, we consider the solvability of a fractional-order p-Laplacian boundary value problem on the half-line where the fractional differential operator is nonlinear and has a kernel dimension equal to two. Due to the nonlinearity of the fractional differential operator, the Ge and Ren extension of Mawhin’s coincidence degree theory is applied to obtain existence results for the boundary value problem at resonance. Two examples are used to validate the established results.


2016 ◽  
Vol 56 (1) ◽  
pp. 143-153 ◽  
Author(s):  
Katarzyna Szymańska-Dębowska

Abstract This work is devoted to the existence of solutions for a system of nonlocal resonant boundary value problem $$\matrix{{x'' = f(t,x),} \hfill & {x'(0) = 0,} \hfill & {x'(1) = {\int_0^1 {x(s)dg(s)},} }} $$ where f : [0, 1] × ℝk → ℝk is continuous and g : [0, 1] → ℝk is a function of bounded variation.


SpringerPlus ◽  
2016 ◽  
Vol 5 (1) ◽  
Author(s):  
A. Guezane-Lakoud ◽  
R. Khaldi ◽  
A. Kılıçman

Sign in / Sign up

Export Citation Format

Share Document