scholarly journals Investigation of Diagonal Strut Actions in Masonry-Infilled Reinforced Concrete Frames

Author(s):  
Seung-Jae Lee ◽  
Tae-Sung Eom ◽  
Eunjong Yu

AbstractThis study analytically investigated the behavior of reinforced concrete frames with masonry infills. For the analysis, VecTor2, a nonlinear finite element analysis program that implements the Modified Compression Field Theory and Disturbed Stress Field Model, was used. To account for the slip behavior at the mortar joints in the masonry element, the hyperbolic Mohr–Coulomb yield criterion, defined as a function of cohesion and friction angle, was used. The analysis results showed that the lateral resistance and failure mode of the infilled frames were significantly affected by the thickness of the masonry infill, cohesion on the mortar joint–brick interface, and poor mortar filling (or gap) on the masonry boundary under the beam. Diagonal strut actions developed along two or three load paths on the mortar infill, including the backstay actions near the tension column and push-down actions near the compression columns. Such backstay and push-down actions increased the axial and shear forces of columns, and ultimately affect the strength, ductility, and failure mode of the infilled frames.

2013 ◽  
Vol 353-356 ◽  
pp. 2357-2361
Author(s):  
Yong Jun Liu ◽  
Yang Yang Liu ◽  
Ran Bi ◽  
Jing Hai Zhou

In general, reinforced concrete frames have excellent fire resistance properties, but more and more concrete buildings collapsed in fires. The majority of past research work on the response of concrete building to fire has looked at the effects of fire upon individual structural members, and most commonly when subjected to heating from standard fire tests. At present, the fire behaviors of whole reinforced concrete frame are not adequately understood. There is a great need for development of models which consider the effects of fire on the whole structure under more realistic heating regimes. There is also a fundamental requirement for further large-scale testing of concrete structures, to observe the behavior of whole concrete structures in real fires and also for validation of advanced computer analysis tools. Accuracy and efficiency are two major concerns in finite element analysis of structural response of concrete frames in fires. In this paper, a multi-type finite elements hybrid model for simulating structural behavior of whole reinforced concrete frames in real fire is suggested.


2021 ◽  
Vol 246 ◽  
pp. 112833
Author(s):  
Prateek Kumar Dhir ◽  
Enrico Tubaldi ◽  
Hamid Ahmadi ◽  
Julia Gough

Sign in / Sign up

Export Citation Format

Share Document