scholarly journals Prediction of geomagnetically induced currents (GICs) flowing in Japanese power grid for Carrington-class magnetic storms

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Yusuke Ebihara ◽  
Shinichi Watari ◽  
Sandeep Kumar

AbstractLarge-amplitude geomagnetically induced currents (GICs) are the natural consequences of the solar–terrestrial connection triggered by solar eruptions. The threat of severe damage of power grids due to the GICs is a major concern, in particular, at high latitudes, but is not well understood as for low-latitude power grids. The purpose of this study is to evaluate the lower limit of the GICs that could flow in the Japanese power grid against a Carrington-class severe magnetic storm. On the basis of the geomagnetic disturbances (GMDs) observed at Colaba, India, during the Carrington event in 1859, we calculated the geoelectric disturbances (GEDs) by a convolution theory, and calculated GICs flowing through transformers at 3 substations in the Japanese extra-high-voltage (500-kV) power grid by a linear combination of the GEDs. The estimated GEDs could reach ~ 2.5 V/km at Kakioka, and the GICs could reach, at least, 89 ± 30 A near the storm maximum. These values are several times larger than those estimated for the 13–14 March 1989 storm (in which power blackout occurred in Canada), and the 29–31 October 2003 storm (in which power blackout occurred in Sweden). The GICs estimated here are the lower limits, and there is a probability of stronger GICs at other substations. The method introduced here will be immediately applicable for benchmark evaluation of low-latitude GICs against the Carrington-class magnetic storms if one assumes electrical parameters, such as resistance of transmission lines, with sufficient accuracy.

2019 ◽  
Vol 41 (1) ◽  
pp. 115-166 ◽  
Author(s):  
Anna Kelbert

AbstractGeomagnetic disturbances cause perturbations in the Earth’s magnetic field which, by the principle of electromagnetic induction, in turn cause electric currents to flow in the Earth. These geomagnetically induced currents (GICs) also enter man-made technological conductors that are grounded; notably, telegraph systems, submarine cables and pipelines, and, perhaps most significantly, electric power grids, where transformer groundings at power grid substations serve as entry points for GICs. The strength of the GICs that flow through a transformer depends on multiple factors, including the spatiotemporal signature of the geomagnetic disturbance, the geometry and specifications of the power grid, and the electrical conductivity structure of the Earth’s subsurface. Strong GICs are hazardous to power grids and other infrastructure; for example, they can severely damage transformers and thereby cause extensive blackouts. Extreme space weather is therefore hazardous to man-made technologies. The phenomena of extreme geomagnetic disturbances, including storms and substorms, and their effects on human activity are commonly referred to as geomagnetic hazards. Here, we provide a review of relevant GIC studies from around the world and describe their common and unique features, while focusing especially on the effects that the Earth’s electrical conductivity has on the GICs flowing in the electric power grids.


2013 ◽  
Vol 8 (S300) ◽  
pp. 500-501
Author(s):  
Larisa Trichtchenko

AbstractCoronal mass ejections (CME) and associated interplanetary-propagated solar wind disturbances are the established causes of the geomagnetic storms which, in turn, create the most hazardous impacts on power grids. These impacts are due to the large geomagnetically induced currents (GIC) associated with variations of geomagnetic field during storms, which, flowing through the transformer windings, cause extra magnetisation. That can lead to transformer saturation and, in extreme cases, can result in power blackouts. Thus, it is of practical importance to study the solar causes of the large space weather events. This paper presents the example of the space weather chain for the event of 5-6 November 2001 and a table providing complete overview of the largest solar events during solar cycle 23 with their subsequent effects on interplanetary medium and on the ground. This compact overview can be used as guidance for investigations of the solar causes and their predictions, which has a practical importance in everyday life.


2019 ◽  
Vol 9 ◽  
pp. A18 ◽  
Author(s):  
Vladimir Belakhovsky ◽  
Vyacheslav Pilipenko ◽  
Mark Engebretson ◽  
Yaroslav Sakharov ◽  
Vasily Selivanov

Geomagnetically induced currents (GICs) represent a significant challenge for society on a stable electricity supply. Space weather activates global electromagnetic and plasma processes in the near-Earth environment, however, the highest risk of GICs is related not directly to those processes with enormous energy yield, but too much weaker, but fast, processes. Here we consider several typical examples of such fast processes and their impact on power transmission lines in the Kola Peninsula and in Karelia: interplanetary shocks; traveling convection vortices; impulses embedded in substorms; and irregular Pi3 pulsations. Geomagnetic field variability is examined using data from the IMAGE (International Monitor for Auroral Geomagnetic Effects) magnetometer array. We have confirmed that during the considered impulsive events the ionospheric currents fluctuate in both the East-West and North-South directions, and they do induce GIC in latitudinally extended electric power line. It is important to reveal the fine structure of fast geomagnetic variations during storms and substorms not only for a practical point of view but also for a fundamental scientific view.


2018 ◽  
Vol 8 ◽  
pp. A60 ◽  
Author(s):  
Chunming Liu ◽  
Xuan Wang ◽  
Hongmei Wang ◽  
Huilun Zhao

In recent years, several magnetic storms have disrupted the normal operation of power grids in the mid-low latitudes. Data obtained from the monitoring of geomagnetically induced currents (GIC) indicate that GIC tend to be elevated at nodes near the ocean-land interface. This paper discusses the influence of the geomagnetic coast effect on GIC in power grids based on geomagnetic data from a coastal power station on November 9, 2004. We used a three-dimensional (3D) Earth conductivity model to calculate the induced electric field using the finite element method (FEM), and compared it to a one-dimensional (1D) layered model, which could not incorporate a coastal effect. In this manner, the GIC in the Ling’ao power plant was predicted while taking the coast effect into consideration in one case and ignoring it in the other. We found that the GIC predicted by the 3D model, which took the coastal effect into consideration, showed only a 2.9% discrepancy with the recorded value, while the 1D model underestimated the GIC by 23%. Our results demonstrate that the abrupt lateral variations of Earth conductivity structures significantly influence GIC in the power grid. We can infer that high GIC may appear even at mid-low latitude areas that are subjected to the coast effect. Therefore, this effect should be taken into consideration while assessing GIC risk when power networks are located in areas with lateral shifts in Earth conductivity structures, such as the shoreline and the interfaces of different geological structures.


Sign in / Sign up

Export Citation Format

Share Document