scholarly journals Crustal structure and upper mantle anisotropy of the Afar triple junction

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
U. Kumar ◽  
C. P. Legendre ◽  
B. S. Huang

AbstractThe Afar region is a tectonically distinct area useful for studying continental break-up and rifting. Various conflicting models have been suggested to explain the lateral variations of the anisotropy in this region. To address this issue, we investigated the tectonics of the Afar region using receiver function and shear-wave splitting measurements based on broadband seismic data from 227 stations in the region. Further, the receiver function results were inverted to obtain the crustal thickness and Vp/Vs ratio of the region. Our results reveal a thick African crust (thicker than 40 km) with typical Vp/Vs values for the continental crust, elongated down to 21 km along the rift system with very high Vp/Vs values near the fractured zones, suggesting crustal thinning near the fractured zones. Our shear-wave splitting measurements indicate a general fast axis orientation of N030E. However, substantial disparities in the fast anisotropy direction exist in the triple junction region, with some stations displaying a direction of N120E, which is perpendicular to the fast directions measured at the surrounding stations. In addition, many stations located close to the rifts and within the Arabian Plate provide mostly null measurements, indicating the presence of fluids or isotropic media. This study uses several methodologies to unravel the structure and evolution of the Afar region, providing valuable insight into the Afar, a tectonically distinct region, which will be useful for elucidating the mechanisms and characteristics of a continental break-up and the rifting process.

2019 ◽  
Vol 219 (3) ◽  
pp. 2013-2033
Author(s):  
Jyotima Kanaujia ◽  
Supriyo Mitra ◽  
S C Gupta ◽  
M L Sharma

SUMMARY Crustal anisotropy of the Garhwal Lesser Himalaya has been studied using local earthquake data from the Tehri seismic network. Earthquakes with magnitude (mL) up to 3, which occurred between January 2008 to December 2010, have been used for the shear wave splitting (SWS) analysis. SWS measurements have been done for steeply incident ray paths (ic ≤ 45°) to estimate the anisotropy fast axis orientation (ϕ) and the delay time (∂t). A total of 241 waveforms have been analysed, which yielded 209 splitting measurements, and 32 null results. The analysis reveals spatial and depth variation of ϕ and ∂t, suggesting complex anisotropic structure beneath the Garhwal Lesser Himalaya. The mean ∂t is estimated to be 0.07 ± 0.065 s with a mean depth normalized ∂t of 0.005 s km–1. We present the ϕ and Vs per cent anisotropy results by segregating these as a function of depth, for earthquakes originating above and below the Main Himalayan Thrust (MHT); and spatially, for stations located in the Outer Lesser Himalaya (OLH) and the Inner Lesser Himalaya (ILH). Earthquakes above the MHT sample only the Himalayan wedge, while those below the MHT sample both the underthrust Indian crust and the Himalayan wedge. Within the Himalayan wedge, for both OLH and ILH, the mean ϕ is oriented NE–SW, in the direction of maximum horizontal compressive stress axis (SHmax). This anisotropy is possibly due to stress-aligned microcracks controlled by the local stress pattern within the Himalayan wedge. The mean of normalized ∂t for all events originating within the Himalaya is 0.006 s km–1, which yields a Vs per cent anisotropy of ∼2.28 per cent. Assuming a homogeneous distribution of stress-aligned microcracks we compute a crack density of ∼0.0228 for the Garhwal Lesser Himalaya. At stations close to the regional fault systems, the mean ϕ is subparallel to the strike of the faults, and the anisotropy, locally, appears to be structure-related. For earthquakes originating below the MHT, in OLH, the mean ϕ orientation matches those from the Himalayan wedge and the normalized ∂t decreases with depth. This suggests depth localization of the anisotropy, primarily present within the Himalayan wedge. In the ILH, we observe large variations in the mean ϕ orientation and larger values of ∂t close to the regional fault/thrust systems. This is possibly a composite effect of the structure-related shallow crustal anisotropy and the frozen anisotropy of the underthrusting Indian crust. However, these cannot be segregated in this study.


2018 ◽  
Vol 89 (6) ◽  
pp. 2294-2298
Author(s):  
Saleh Qaysi ◽  
Kelly H. Liu ◽  
Stephen S. Gao

1996 ◽  
Vol 23 (5) ◽  
pp. 455-458 ◽  
Author(s):  
John R Evans ◽  
G. R. Foulger ◽  
Bruce R. Julian ◽  
Angus D. Miller

Sign in / Sign up

Export Citation Format

Share Document