mantle anisotropy
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 33)

H-INDEX

35
(FIVE YEARS 3)

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Caroline M. Eakin

AbstractThe Australian continental crust preserves a rich geological history, but it is unclear to what extent this history is expressed deeper within the mantle. Here an investigation of Quasi-Love waves is performed to detect scattering of seismic surface waves at mantle depths (between 100–200 km) by lateral gradients in seismic anisotropy. Across Australasia 275 new observations of Quasi-Love waves are presented. The inferred scattering source and lateral anisotropic gradients are preferentially located either near the passive continental margins, or near the boundaries of major geological provinces within Australia. Pervasive fossilized lithospheric anisotropy within the continental interior is implied, on a scale that mirrors the crustal geology at the surface, and a strong lithosphere that has preserved this signal over billions of years. Along the continental margins, lateral anisotropic gradients may indicate either the edge of the thick continental lithosphere, or small-scale dynamic processes in the asthenosphere below.


2021 ◽  
Vol 228 (1) ◽  
pp. 366-386
Author(s):  
Jonathan Wolf ◽  
Maureen D Long ◽  
Kuangdai Leng ◽  
Tarje Nissen-Meyer

SUMMARY Observations of seismic anisotropy at the base of the mantle are abundant. Given recent progress in understanding how deformation relates to anisotropy in lowermost mantle minerals at the relevant pressure and temperature conditions, these observations can be used to test specific geodynamic scenarios, and have the potential to reveal patterns of flow at the base of the mantle. For example, several recent studies have sought to reproduce measurements of shear wave splitting due to D″ anisotropy using models that invoke specific flow and texture development geometries. A major limitation in such studies, however, is that the forward modelling is nearly always carried out using a ray theoretical framework, and finite-frequency wave propagation effects are not considered. Here we present a series of numerical wave propagation simulation experiments that explore the finite-frequency sensitivity of SKS, SKKS and ScS phases to laterally varying anisotropy at the base of the mantle. We build on previous work that developed forward modelling capabilities for anisotropic lowermost mantle models using the AxiSEM3D spectral element solver, which can handle arbitrary anisotropic geometries. This approach enables us to compute seismograms for relatively short periods (∼4 s) for models that include fully 3-D anisotropy at moderate computational cost. We generate synthetic waveforms for a suite of anisotropic models with increasing complexity. We first test a variety of candidate elastic tensors in laterally homogeneous models to understand how different lowermost mantle elasticity scenarios express themselves in shear wave splitting measurements. We then consider a series of laterally heterogeneous models of increasing complexity, exploring how splitting behaviour varies across the edges of anisotropic blocks and investigating the minimum sizes of anisotropic heterogeneities that can be reliably detected using SKS, SKKS and ScS splitting. Finally, we apply our modelling strategy to a previously published observational study of anisotropy at the base of the mantle beneath Iceland. Our results show that while ray theory is often a suitable approximation for predicting splitting, particularly for SK(K)S phases, full-wave effects on splitting due to lowermost mantle anisotropy can be considerable in some circumstances. Our simulations illuminate some of the challenges inherent in reliably detecting deep mantle anisotropy using body wave phases, and point to new strategies for interpreting SKS, SKKS and ScS waveforms that take full advantage of newly available computational techniques in seismology.


2021 ◽  
Author(s):  
Caroline Eakin

Abstract The Australian continental crust preserves a rich geological history, but it is unclear to what extent this history is expressed deeper within the mantle. Scattering of surface waves predominantly between 100-200 km depth by lateral gradients in seismic anisotropy, termed Quasi-Love waves, offer potential new insights. Across Australasia over 275 new scatterers are detected, and are found to be preferentially located near (1) the passive continental margins, and (2) the boundaries of major geological provinces within Australia. Such lateral anisotropic gradients imply pervasive fossilized lithospheric anisotropy within the continental interior, on a scale that mirrors the crustal geology at the surface, and a strong lithosphere that preserves this signal over billions of years. Along the continental margins, lateral anisotropic gradients may indicate either the edge of the thick continental lithosphere, or small-scale dynamic processes in the asthenosphere, such as edge-drive convection, tied to the transition from oceanic to continental lithosphere.


2021 ◽  
Author(s):  
Ceyhun Erman ◽  
Seda Yolsal-Çevikbilen ◽  
Tuna Eken ◽  
Tuncay Taymaz

<p>The Anatolia, one of the most actively deforming continental regions of the Earth, is considered to be a natural laboratory for studying tectonic structures, complex deformation patterns, and intense seismicity at various scales. Active tectonics of this plate has been shaped by complex interactions between the Arabian, African and Eurasian plates. In the region, there are several suture zones associated with the closure of Tethys Ocean, large-scale transform faults (e.g. North Anatolian Fault) and geological structures developed in relation to extensional and compressional tectonics. Seismic anisotropy studies are needed to better understand the relationship between surface deformation and mantle dynamics, and to establish a connection between the involved deformation models and anisotropic structures in the lithosphere and asthenosphere layers beneath Anatolia. To evaluate lateral and vertical variations in the upper mantle anisotropy and thus underlying geodynamic processes, we apply teleseismic shear wave splitting (e.g. SKS, PKS, SKKS) analyses using about 500 broad-band seismic stations located throughout Anatolia, which belong to AFAD, KOERI and NOA seismic networks. Splitting intensities (SI) were calculated for the entire data set to compare piercing parameters obtained from both SI and SWS techniques. Overall, the NE-SW fast directions were observed for the entire Anatolia. Local changes in FPDs and DTs should be interpreted with caution as they will give important clues about the correlation between existing tectonic forces and upper mantle deformation. In particular, complex anisotropy signature along the large-scale transform faults (NAF and EAF) was investigated by using multisplit approach (e.g., Eken and Tilmann, 2014) that uses a grid search over four splitting parameters of two-layer anisotropy. A bootstrap-based analysis was performed to statistically evaluate the possible variations in two-layer models. Preliminary results reveal that a two-layer anisotropy exists at the western part of the Anatolia along the NAF. The obtained two-layer anisotropy models imply that signatures of lithospheric deformation and of asthenospheric flow driven shearing remarkably differ in NW Anatolia. In this part of the Anatolian plate, we observed large time delays up to ~2.2 sec, and fast polarization directions: i) mainly consistent with the strike of NAF in the lithosphere, ii) N-S oriented in the asthenosphere that is likely attributed to the mantle flow regime under the influence of slab roll-back and trench retreat along the Hellenic subduction zone.</p>


2021 ◽  
Author(s):  
Federica Restelli ◽  
Paula Koelemeijer ◽  
Christophe Zaroli

<p>Seismic tomography is essential for imaging the Earth’s interior in order to better understand the dynamic processes at work. However, robust physical interpretation of tomographic images remain difficult as the inverse problem is under-determined, model amplitudes are biased and uncertainties are usually not quantified.</p><p>Commonly-used techniques, such as damped least-square inversions, break the non-uniqueness of the model solution by adding a subjective, ad hoc, regularization, which can lead to biased amplitudes and potential physical misinterpretations. The SOLA method (Zaroli, 2016; Zaroli et al., 2017), based on a Backus-Gilbert approach, removes the non-uniquess by averaging, rather than introducing a subjective regularization. The method explicitly constrains the amplitudes to be unbiased and the computation of the model resolution and uncertainty is inherent and efficient. Instead of aiming to minimize the data fit, the SOLA approach aims to minimize the size of the averaging volume <!-- Think it is clear enough without the extra sentence – as averaging is mentioned before -->and the associated uncertainties.</p><p>We aim to build a new tomographic model of the Earth’s mantle using the SOLA method. We focus our observations on normal mode data, the standing waves of the Earth observed after very large earthquakes, which are not affected by an uneven data distribution. As normal modes are sensitive to multiple seismic parameters, we treat the sensitivity to different parameters as so called “3D noise” within the SOLA framework. We are specifically interested in constraining seismic anisotropy, which provides more direct information on mantle flow.</p><p>Here, we report on some forward modelling results, fundamental to understanding normal mode sensitivity to seismic anisotropy at different depths and identifying which modes to focus on during inversions. We also show our initial work towards building a new tomography model, including the calculation of 3D noise and target kernels.</p><p> </p>


2021 ◽  
Vol 144 ◽  
pp. 101817
Author(s):  
Arpita Paul ◽  
Devajit Hazarika ◽  
Monika Wadhawan ◽  
Naresh Kumar

2021 ◽  
Vol 225 (3) ◽  
pp. 2097-2119
Author(s):  
Brandon P VanderBeek ◽  
Manuele Faccenda

SUMMARY Despite the well-established anisotropic nature of Earth’s upper mantle, the influence of elastic anisotropy on teleseismic P-wave imaging remains largely ignored. Unmodelled anisotropic heterogeneity can lead to substantial isotropic velocity artefacts that may be misinterpreted as compositional heterogeneities. Recent studies have demonstrated the possibility of inverting P-wave delay times for the strength and orientation of seismic anisotropy. However, the ability of P-wave delay times to constrain complex anisotropic patterns, such as those expected in subduction settings, remains unclear as synthetic testing has been restricted to the recovery of simplified block-like structures using ideal self-consistent data (i.e. data produced using the assumptions built into the tomography algorithm). Here, we present a modified parametrization for imaging arbitrarily oriented hexagonal anisotropy and test the method by reconstructing geodynamic simulations of subduction. Our inversion approach allows for isotropic starting models and includes approximate analytic finite-frequency sensitivity kernels for the simplified anisotropic parameters. Synthetic seismic data are created by propagating teleseismic waves through an elastically anisotropic subduction zone model created via petrologic-thermomechanical modelling. Delay times across a synthetic seismic array are measured using conventional cross-correlation techniques. We find that our imaging algorithm is capable of resolving large-scale features in subduction zone anisotropic structure (e.g. toroidal flow pattern and dipping fabrics associated with the descending slab). Allowing for arbitrarily oriented anisotropy also results in a more accurate reconstruction of isotropic slab structure. In comparison, models created assuming isotropy or only azimuthal anisotropy contain significant isotropic and anisotropic imaging artefacts that may lead to spurious interpretations. We conclude that teleseismic P-wave traveltimes are a useful observable for probing the 3-D distribution of upper mantle anisotropy and that anisotropic inversions should be explored to better understand the nature of isotropic velocity anomalies particularly in subduction settings.


2021 ◽  
Author(s):  
Caroline Eakin

Abstract Australia is an old stable continent with a rich geological history. Limitations in sub-surface imaging below the Moho, however, mean that is unclear to what extent, and to what depth, this rich geological history is expressed in the mantle. Scattering of surface waves at ~150km depth by lateral gradients or boundaries in seismic anisotropy, termed Quasi-Love waves, offer potential new insights. The first such analysis for Australia and Zealandia shown here detects over 300 new scatterers that display striking geographical patterns. Around two-thirds of the scatterers are coincident with either the continental margins, or major crustal boundaries within Australia, suggesting deep mantle roots to such features. Within the continental interior such lateral anisotropic gradients imply pervasive fossilized lithospheric anisotropy, on a scale that mirrors the crustal geology at the surface, and a strong lithosphere that preserves this signal over billions of years. Along the continental margins, lateral anisotropic gradients may indicate either the edge of the thick continental lithosphere, or small-scale dynamic processes in the asthenosphere, such as edge-drive convection, tied to the transition from oceanic to continental crust/lithosphere.


Sign in / Sign up

Export Citation Format

Share Document