ne tibetan plateau
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 75)

H-INDEX

29
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Valentí Rull

Cannabis is among the oldest human domesticates and has been subjected to intensive artificial (human-mediated) selection throughout history to create a wide array of varieties and biotypes for diverse uses, including fibre, food, biofuel, medicine and drugs. This paper briefly reviews the available literature on the taxonomy, evolutionary origin and domestication of this plant, as well as its worldwide dispersal, in both its wild and cultivated forms. Emphasis is placed on Europe and especially on the Iberian Peninsula. Today, it is accepted that Cannabis is a monospecific genus with two subspecies, C. sativa subsp. sativa and C. sativa subsp. indica, originating in Europe and Asia, respectively, by allopatric differentiation after geographic isolation fostered by Pleistocene glacial-interglacial cycles. Palynological and phylogeographic evidence situates the Cannabis ancestor on the NE Tibetan Plateau during the mid-Oligocene. The timing and place of domestication is still a matter of debate between contrasting views that defend single or multiple Neolithic domestication centres situated in different parts of the Eurasian supercontinent, notably central/southeastern China and the Caucasus region. Recent meta-analyses have suggested that wild Cannabis may have already been spread across Europe in the Pleistocene, and its domestication could have occurred during the European Copper/Bronze ages. According to the available reviews and meta-analyses, pre-anthropic dispersal of Cannabis into the Iberian Peninsula seems to have occurred only in postglacial times, and the earlier signs of cultivation date to the Early Medieval Ages. However, the palynological and archaeological evidence used to date is insufficient for a sound assessment, and the development of thorough Iberian databases to address further meta-analysis is essential for more robust conclusions. Some clues are provided for these achievements to be fulfilled.


Author(s):  
Valenti Rull

Cannabis is among the oldest human domesticates and has been subjected to intensive artificial (human-mediated) selection throughout history to create a wide array of varieties and biotypes for diverse uses, including fibre, food, biofuel, medicine and drugs. This paper briefly reviews the available literature on the taxonomy, evolutionary origin and domestication of this plant, as well as its worldwide dispersal, in both its wild and cultivated forms. Emphasis is placed on Europe and especially on the Iberian Peninsula. Today, it is accepted that Cannabis is a monospecific genus with two subspecies, C. sativa subsp. sativa and C. sativa subsp. indica, originating in Europe and Asia, respectively, by allopatric differentiation after geographic isolation fostered by Pleistocene glacial-interglacial cycles. Palynological and phylogeographic evidence situates the Cannabis ancestor on the NE Tibetan Plateau during the mid-Oligocene. The timing and place of domestication is still a matter of debate between contrasting views that defend single or multiple Neolithic domestication centres situated in different parts of the Eurasian supercontinent, notably central/southeastern China and the Caucasus region. Recent meta-analyses have suggested that wild Cannabis may have already been spread across Europe in the Pleistocene, and its domestication could have occurred during the European Copper/Bronze ages. According to the available reviews and meta-analyses, pre-anthropic dispersal of Cannabis into the Iberian Peninsula seems to have occurred only in postglacial times, and the earlier signs of cultivation date to the Early Medieval Ages. However, the palynological and archaeological evidence used to date is insufficient for a sound assessment, and the development of thorough Iberian databases to address further meta-analysis is essential for more robust conclusions. Some clues are provided for these achievements to be fulfilled.


2021 ◽  
pp. 103707
Author(s):  
Florian Schwarz ◽  
Ulrich Salzmann ◽  
Andreas Koutsodendris ◽  
Junsheng Nie ◽  
Oliver Friedrich ◽  
...  

Author(s):  
Xuedong Ma ◽  
Gongming Yin ◽  
Chuanyi Wei ◽  
Xiaoke Qiang ◽  
Yuxue Ma ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Shumin Liang ◽  
Wenjun Zheng ◽  
Dongli Zhang ◽  
Gan Chen ◽  
Lei Duan ◽  
...  

Paleoearthquake data obtained from fault trenching are essential for rebuilding the rupture history and understanding the rupture behavior of active faults. However, due to the lack of attention to stratigraphic sequences, the usual multiple trench constraining method may result in uncertainties of paleoearthquake sequences. In this study, we proposed an improved constraining method to generate stratigraphic sequences from multiple trenches of different drainages to obtain a paleoearthquake sequence of the Gulang fault. Single-trench stratigraphic sequences were built up by nineteen trenches excavated along the fault. Based on stratigraphic characteristics, we found the strata sedimented around the fault were derived from five drainages. The single-trench sequences were divided into five drainages to establish the composite sequence of multiple trenches through the correlation of stratigraphic units. Meanwhile, we used high-quality event indicators to pick out very likely earthquakes. Coupled with the dating samples, the events were used to determine the earthquake horizons in the composite sequence and to constrain the numbers and ages of events in each drainage. After combining the event sequences, six paleoearthquakes were determined along the Gulang fault since the late Pleistocene. Their occurrence timings are 13,700–10,400, 10,400–10,200, 8,560–7,295, 5,825–4,810, 4,285–3,200, and 2,615–2,240 a B.P. And their different rupture scenarios indicate that the fault might be composed of two rupture segments.


Sign in / Sign up

Export Citation Format

Share Document