crack density
Recently Published Documents


TOTAL DOCUMENTS

365
(FIVE YEARS 114)

H-INDEX

31
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Haitao Yu ◽  
Zhibin Liu ◽  
Yun Zhang ◽  
Tingyi Luo ◽  
Yasen Tang

Abstract Fault is a common water conduit in coal mine, and the cracks of fault rock will greatly affect its permeability. In this study, three fault samples obtained in the mining area in Southwest Shandong of China was tested and observed by SEM, XRD and plane-polarized light microscope. The geometric characteristics, including crack density, fractal dimension and crack connectivity, of the crack network on the sample surface were calculated. Combined with the mineral content obtained by XRD, the nonuniformity coefficient of mineral composition in rock is defined. The results show that the crack geometric characteristics of the three samples are quite different and the above geometric parameters of crack network on three fault rock samples are correlated. The optical photomicrographs and SEM images show that the crack network is developed most in the fault rock samples with the least clay content. The study suggests that the nonuniformity coefficient of rock samples is positively correlated with the geometric characteristic of crack network. The difference in the crack network of fault rock samples is related to the coefficient of friction of clay.


2021 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
Matthias Drvoderic ◽  
Martin Pletz ◽  
Clara Schuecker

A model that predicts the stiffness degradation in multidirectional reinforced laminates due to off-axis matrix cracks is proposed and evaluated using data from fatigue experiments. Off-axis cracks are detected in images from the fatigue tests with automated crack detection to compute the crack density of the off-axis cracks which is used as the damage parameter for the degradation model. The purpose of this study is to test the effect of off-axis cracks on laminate stiffness for different laminate configurations. The hypothesis is that off-axis cracks have the same effect on the stiffness of a ply regardless of the acting stress components as long as the transverse stress is positive. This hypothesis proves to be wrong. The model is able to predict the stiffness degradation well for laminates with a ply orientation similar to the one used for calibration but deviates for plies with different in-plane shear stress. This behavior can be explained by the theory that off-axis cracks develop by two different micro damage modes depending on the level of in-plane shear stress. It is found that besides influencing the initiation and growth of off-axis cracks, the stiffness degradation is also mode dependent.


2021 ◽  
Vol 11 (4) ◽  
pp. 1-18
Author(s):  
Q. Bai ◽  
H. Konietzky

This contribution proposes a numerical microstructural modeling approach to investigate stress-induced seismic velocity changes on anisotropic rocks. By introducing pre-existing cracks with preferential orientations in bonded-particle assemblies, the transverse isotropic structure of the Whitby Mudstone is simulated. Using power-law distributed aperture and calibrated micro-properties, we successfully reproduce stress-dependent velocity changes on Whitby Mudstones with different anisotropic angles in relation to the applied loads. The proposed model also duplicates the directional dependence of wave speed with respect to the bedding plane as expected theoretically. The numerical models show that velocity increase results from the closure of pre-existing cracks due to load increase. Direct relations are established between velocity changes and opened crack density (or crack closure), which displays a similar tendency compared with theoretical predictions. This relation can be used to quantify the micromechanisms behind the velocity changes. The proposed model provides the ability to directly examine the micro-processes underlying velocity changes.


2021 ◽  
Vol 11 (4) ◽  
pp. 1-38
Author(s):  
M.-j. Zhou

Particle breakage shows significant effect on the macroscopic behavior of rock materials, and the discrete element method is a powerful tool to investigate the relationship between micro fracture and macro deformation and strength. In this study, the concept of crack is introduced into the bonded particle model (BPM) to simulate the breakage behaviour of rockfill materials, with randomly placed weak bonds representing cracks. Different from traditional BPM, the number, position and strength of the weak bonds are directly related to the number, position and length of cracks. With a reasonable length distribution of cracks, the proposed model can successfully reflect both the crushing strength variation and size effects. A set of crack parameters including the crack density, minimum crack length, maximum crack length and fractal dimension, are suggested. The crushing characteristics of realistic rockfill particles with two typical shapes are simulated quantitatively and verified with test data. It is found that the proposed model with suggested crack parameters can give reasonable prediction on the Weibull's modulus and size effect of rockfill particles.


2021 ◽  
Author(s):  
Marcel Gerstgrasser ◽  
Michael Cloots ◽  
Raphael Jakob ◽  
Josef Stirnimann ◽  
Konrad Wegener

Abstract Compared to reference parameters in the low power and scan velocity range, which lead to dense and crack-free CM247LC LPBF samples due to in-situ crack healing, high power, high scan velocities and increased laser beam diameters are investigated, to decrease the production time further. By keeping the maximum laser intensity from the reference and the laser power to scan velocity ratio constant, the intensity approach provides an initial estimation for the laser spot size regarding the measured Archimedean density and crack density in the high power and high scan velocity range. The investigated cracks are identified as re-melting cracks. Solidification or hot cracks are not observed, since the crack healing effect for those kinds of cracks still occurs. Furthermore, a melt pool depth range is discovered, where not only solidification cracks can be avoided, but also re-melting cracks, which are resulting from higher laser power inputs. This theory can be proven by further laser spot size optimization, where the melt pool depth comes closer to the mentioned range. The Archimedean density and crack density results, in case of the 600 W power parameter with 2400 mm/s scan velocity and a beam diameter of 164 µm, are close to the one obtained from the reference with 200 W, a scan velocity of 800 mm/s and a laser spot of 90 µm. With the intensity approach and laser beam diameter optimization, the production time can be reduced by 300%. Based on dimensional analysis, a model, which combines the samples density with the crack density through the melt pool depth, is presented. Six main and two additional process and laser parameters are taken into relation. The result from the model and the measured values from experiments are in good agreement. Additionally, the influence of the doubled layer thickness and an increased hatch distance by 50% with varying scan velocities on the Archimedean density and crack density is analysed.


2021 ◽  
Author(s):  
◽  
Adrian Shelley

<p>This thesis is concerned with scrutinising the source, distribution and detectability of seismic velocity phenomena that may be used as proxies to study conditions in the crust. Specifically, we develop modelling techniques in order to analyse the directional variation of seismic wave speed in the crust and test them at Mt. Asama in Japan and Canterbury, New Zealand. We also implement both active source and noise interferometry to identify velocity variations at Mt. Ruapehu, New Zealand.  Observations of temporal variation of anisotropic seismic velocity parameters at Asama volcano in Japan indicate that there is some process (or processes) affecting anisotropy, attributed to closure of microcracks in the rock as it is subjected to volcanic stress in the crust. To test this assertion, a 3D numerical model is created incorporating volcanic stress, ray tracing and estimation of the anisotropy to produce synthetic shear wave splitting results using a dyke stress model. Anisotropy is calculated in two ways; by considering a basic scenario where crack density is uniform and a case where the strength of anisotropy is related to dry crack closure from deviatoric stress. We find that the approach is sensitive to crack density, crack compliance, and the regional stress field. In the case of dry crack closure, modelled stress conditions produce a much smaller degree of anisotropy than indicated by measurements. We propose that the source of anisotropy changes at Asama is tied to more complex processes that may precipitate from stress changes or other volcanic processes, such as the movement of pore fluid.  We develop a generalised anisotropy inversion model based on the linearised, iterative least-squares inversion technique of Abt and Fischer [2008]. The model is streamlined for use with results from the MFAST automatic shear wave splitting software [Savage et al., 2010]. The method iteratively solves for the best fitting magnitude and orientation of anisotropy in each element of the model space using numerically calculated partial derivatives. The inversion is applied to the Canterbury plains in the region surrounding the Greendale fault, using shear-wave splitting data from the 2010 Darfield earthquake sequence. Crustal anisotropy is resolved down to a depth of 20 km at a spatial resolution of 5 km, with good resolution near the Greendale fault. We identify a lateral variation in anisotropy strength across the Greendale fault, possibly associated with post-seismic stress changes.  We perform active source and noise interferometry at Ruapehu in order to investigate potential seismic velocity changes and assess their use as a possible eruption forecasting method. Six co-located 100 kg ammonium nitrate fuel oil explosives were set off serially at Lake Moawhango, situated approximately 20 km south-east of Mount Ruapehu. Two methods of interferometry, using moving window cross correlation in the time and frequency domains, respectively, were applied to the recorded signal from each explosion pair in order to determine velocity changes from the signal coda waves. We identify possible diurnal velocity variations of ~ 0:7% associated with strain caused by the solid Earth tide. Synthetic testing of velocity variation recoverability was also performed using both methods. Interferometry of noise cross-correlations during the period was also performed using moving window cross correlation in the frequency domain. Analysis of velocity variations in the ZZ, RR and TT component pairs show little coherency. This, combined with results from synthetic testing that show that the frequency domain interferometry technique employed is unstable above velocity variations of 0.1%, indicate that the method may not be suitable for determining velocity variations at Ruapehu.</p>


2021 ◽  
Author(s):  
◽  
Adrian Shelley

<p>This thesis is concerned with scrutinising the source, distribution and detectability of seismic velocity phenomena that may be used as proxies to study conditions in the crust. Specifically, we develop modelling techniques in order to analyse the directional variation of seismic wave speed in the crust and test them at Mt. Asama in Japan and Canterbury, New Zealand. We also implement both active source and noise interferometry to identify velocity variations at Mt. Ruapehu, New Zealand.  Observations of temporal variation of anisotropic seismic velocity parameters at Asama volcano in Japan indicate that there is some process (or processes) affecting anisotropy, attributed to closure of microcracks in the rock as it is subjected to volcanic stress in the crust. To test this assertion, a 3D numerical model is created incorporating volcanic stress, ray tracing and estimation of the anisotropy to produce synthetic shear wave splitting results using a dyke stress model. Anisotropy is calculated in two ways; by considering a basic scenario where crack density is uniform and a case where the strength of anisotropy is related to dry crack closure from deviatoric stress. We find that the approach is sensitive to crack density, crack compliance, and the regional stress field. In the case of dry crack closure, modelled stress conditions produce a much smaller degree of anisotropy than indicated by measurements. We propose that the source of anisotropy changes at Asama is tied to more complex processes that may precipitate from stress changes or other volcanic processes, such as the movement of pore fluid.  We develop a generalised anisotropy inversion model based on the linearised, iterative least-squares inversion technique of Abt and Fischer [2008]. The model is streamlined for use with results from the MFAST automatic shear wave splitting software [Savage et al., 2010]. The method iteratively solves for the best fitting magnitude and orientation of anisotropy in each element of the model space using numerically calculated partial derivatives. The inversion is applied to the Canterbury plains in the region surrounding the Greendale fault, using shear-wave splitting data from the 2010 Darfield earthquake sequence. Crustal anisotropy is resolved down to a depth of 20 km at a spatial resolution of 5 km, with good resolution near the Greendale fault. We identify a lateral variation in anisotropy strength across the Greendale fault, possibly associated with post-seismic stress changes.  We perform active source and noise interferometry at Ruapehu in order to investigate potential seismic velocity changes and assess their use as a possible eruption forecasting method. Six co-located 100 kg ammonium nitrate fuel oil explosives were set off serially at Lake Moawhango, situated approximately 20 km south-east of Mount Ruapehu. Two methods of interferometry, using moving window cross correlation in the time and frequency domains, respectively, were applied to the recorded signal from each explosion pair in order to determine velocity changes from the signal coda waves. We identify possible diurnal velocity variations of ~ 0:7% associated with strain caused by the solid Earth tide. Synthetic testing of velocity variation recoverability was also performed using both methods. Interferometry of noise cross-correlations during the period was also performed using moving window cross correlation in the frequency domain. Analysis of velocity variations in the ZZ, RR and TT component pairs show little coherency. This, combined with results from synthetic testing that show that the frequency domain interferometry technique employed is unstable above velocity variations of 0.1%, indicate that the method may not be suitable for determining velocity variations at Ruapehu.</p>


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
MD Sameer ◽  
Anil Kumar Birru ◽  
G. Srinu ◽  
Ch Naresh

Purpose The electric discharge machining (EDM) involves electrons discharged from the electrode and machining progresses due to the removal of the material from the component. This a thermal-based machining process primarily used for hard to machine components with conventional methods. This process is used to make intricate cavities and contours. The fabricated part is the replica of the tool material with high surface finish and good dimensional accuracy. This study aims to evaluate the comprehensive effect of process parameters on electric discharge machining of maraging steel. Design/methodology/approach Multiple criteria Decision making (MCDM) techniques are used to select the best parameters by comparing several responses to achieve the desired goal. There are different MCDM techniques available for optimization of machining parameters. In the current investigation, multi-objective optimization by data envelopment analysis based ranking (DEAR) approach was used for machining Maraging C300 grade steel. Findings The Taguchi L9 runs were planned with process parameters such as current (Amp), Tool diameter (mm) and Dielectric pressure (MPa). The effect of process parameters on the responses, namely, material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR) were evaluated. High MRR is found at 15 A current, 14 mm tool diameter and dielectric pressure of 0.2 MPa. Optimum process parameters experiment showed reduced crack density. Originality/value An effort was made successfully to enhance the responses using the DEAR method and establish the decision making of selecting the optimal parameters by comparing the results obtained by machining maraging steel C300 grade.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Zhu Chun ◽  
Lin Yun ◽  
Feng Gan

Abstract Thermally induced changes in mesocrack and the physical properties of fine-grained granite may influence their stability, transport characteristics, and performance related to various deep subsurface energy projects. In this study, granite was heat-treated at different temperatures (20°C, 100°C, 200°C, 300°C, 400°C, 500°C, and 600°C). The propagation and evolution of different types of cracks and the physical properties of the granite were quantitatively investigated, using optical observations of petrographic thin sections, P-wave velocity measurements, and permeability tests. The results show that as the temperature increased, the number and length of cracks increased, and the cracks were randomly distributed in all directions. This led to an increase in rock damage (λn) and an increase in permeability (K). In particular, when the temperature was ≥400°C, the damage rate significantly increased, and the number and length of intragranular cracks significantly exceeded the number and length of intergranular cracks. This led to changes in the permeation path, causing it to mainly travel through the interior of mineral particles. Using the inverse of P-wave velocity (VP), the dimensionless crack density (ρ) of granite was found to increase as the temperature increased, and this result was similar to the change of optical crack density (Pl). These analyses laid a reference for understanding the correlation between microcrack characteristics and macrophysical properties of granite.


Sign in / Sign up

Export Citation Format

Share Document