scholarly journals Self-similar stochastic slip distributions on a non-planar fault for tsunami scenarios for megathrust earthquakes

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Masaru Nakano ◽  
Shane Murphy ◽  
Ryoichiro Agata ◽  
Yasuhiko Igarashi ◽  
Masato Okada ◽  
...  
2017 ◽  
Vol 12 (4) ◽  
pp. 775-781 ◽  
Author(s):  
Takane Hori ◽  

This paper describes earthquake and tsunami scenarios as basic information for preparing for the next Nankai megathrust earthquakes. Models to clarify the size of the Nankai megathrust earthquake and changes in occurrence intervals, simulations using such models, and simulations of crustal deformations and tsunamis based on the simulations were employed. This paper re-examines past earthquakes and tsunamis, the possibility of slightly larger earthquakes and tsunamis, their sizes, the necessity of countermeasures against subsidence caused by earthquakes in the Inland Sea, the possibility of the Nankai earthquake occurrence before the Tokai (Tonankai) earthquake, and the possibility of the triggering of the Nankai earthquake by the Hyuga-nada earthquake.


2020 ◽  
Vol 20 (11) ◽  
pp. 3039-3056
Author(s):  
Katsuichiro Goda ◽  
Tomohiro Yasuda ◽  
Nobuhito Mori ◽  
Ario Muhammad ◽  
Raffaele De Risi ◽  
...  

Abstract. Nankai–Tonankai megathrust earthquakes and tsunamis pose significant risks to coastal communities in western and central Japan. Historically, this seismic region hosted many major earthquakes, and the current national tsunami hazard assessments in Japan consider megathrust events as those having moment magnitudes between 9.0 and 9.1. In responding to the lack of rigorous uncertainty analysis, this study presents an extensive tsunami hazard assessment for the Nankai–Tonankai Trough events, focusing on the southwestern Pacific region of Japan. A set of 1000 kinematic earthquake rupture models is generated via stochastic source modelling approaches, and Monte Carlo tsunami simulations are carried out by considering high-resolution grid data of 10 m and coastal defence structures. Significant advantages of the stochastic tsunami simulation methods include the enhanced capabilities to quantify the uncertainty associated with tsunami hazard assessments and to effectively visualize the results in an integrated manner. The results from the stochastic tsunami simulations can inform regional and local tsunami risk reduction actions in light of inevitable uncertainty associated with such tsunami hazard assessments and complement conventional deterministic tsunami scenarios and their hazard predictions, such as those developed by the Central Disaster Management Council of the Japanese Cabinet Office.


Author(s):  
K. Kuroda ◽  
Y. Tomokiyo ◽  
T. Kumano ◽  
T. Eguchi

The contrast in electron microscopic images of planar faults in a crystal is characterized by a phase factor , where is the reciprocal lattice vector of the operating reflection, and the lattice displacement due to the fault under consideration. Within the two-beam theory a planar fault with an integer value of is invisible, but a detectable contrast is expected when the many-beam dynamical effect is not negligibly small. A weak fringe contrast is also expected when differs slightly from an integer owing to an additional small displacement of the lattice across the fault. These faint contrasts are termed as many-beam contrasts in the former case, and as ε fringe contrasts in the latter. In the present work stacking faults in Cu-Al alloys and antiphase boundaries (APB) in CuZn, FeCo and Fe-Al alloys were observed under such conditions as mentioned above, and the results were compared with the image profiles of the faults calculated in the systematic ten-beam approximation.


2006 ◽  
Vol 20 ◽  
pp. 1-4
Author(s):  
A. Nusser
Keyword(s):  

2019 ◽  
Author(s):  
Marino Protti ◽  
◽  
Nathan Bangs ◽  
Peter Baumgartner ◽  
Donald Fisher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document