scholarly journals Millennial-scale oscillations in the Kuroshio–Oyashio boundary during MIS 19 based on the radiolarian record from the Chiba composite section, central Japan

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Takuya Itaki ◽  
Sakura Utsuki ◽  
Yuki Haneda ◽  
Kentaro Izumi ◽  
Yoshimi Kubota ◽  
...  

AbstractMarine isotope stage (MIS) 19 is considered to be the best orbital analog for the present interglacial. Consequently, clarifying the climatic features of this period can provide us with insights regarding a natural baseline for assessing future climate changes. A high-resolution radiolarian record from 800 to 750 ka (MIS 20 to MIS 18) was examined from the Chiba composite section (CbCS) of the Kokumoto Formation, including the Global Boundary Stratotype Section and Point for the lower–middle Pleistocene boundary on the Boso Peninsula on the Pacific side of central Japan. Millennial-scale oscillations in the Kuroshio warm and Oyashio cold currents were revealed by the Tr index, which is estimated using a simple equation based on radiolarian assemblages. The estimated Tr values ranged between 0.1 and 0.8 for MIS 18 through MIS 19, with minimum and maximum values corresponding to values observed off present day Aomori (41°N) and the Boso Peninsula (35°N), respectively. The observed patterns tended to be synchronous with the total radiolarian abundance associated with their production. Multiple maxima in radiolarian abundance occurred during periods of the Oyashio expanded mode before 785 ka and during periods of Kuroshio extension after 785 ka in MIS 19. Such increases in radiolarian abundance with the Kuroshio extension during MIS 19 are likely related to improvements in nutrient and photic environments with the development of a two-layer structure along the Kuroshio–Oyashio boundary zone. A similar pattern of millennial-scale climatic changes was also recognized in a precipitation record from the Sulmona Basin in central Italy, suggesting a close relationship with the CbCS record as a result of a large-scale climate system similar to the Arctic Oscillation in the northern hemisphere.

2020 ◽  
Author(s):  
Takuya Itaki ◽  
Sakura Utsuki ◽  
Yuki Haneda ◽  
Kentaro Izumi ◽  
Yoshimi Kubota ◽  
...  

Abstract A high-resolution radiolarian record from 800 to 750 ka was examined from the Chiba composite section (CbCS) of the Kokumoto Formation, including the GSSP (Global Boundary Stratotype Section and Point) for the Lower–Middle Pleistocene boundary, on the Boso Peninsula, Pacific side of central Japan. Total radiolarian abundance was closely related to biological productivity in the sea-surface layer and was observed to increase and repeatedly decrease in the millennial-scale period. Summer SST (sea-surface temperature), which was estimated based on the radiolarian assemblage, was 19°C at the end of MIS-20 (790-793 ka) and fluctuated between 21 and 26°C during MIS-19, with the warm periods tending to be synchronous with high productivity. Recent observations have revealed that productivity increases with a northward shift of the Kuroshio along the Kuroshio-Oyashio boundary zone. Therefore, high productivity in the warmer and stratified conditions during MIS-19 can be interpreted as being closely related to millennial-scale oscillations of the Kuroshio Extension. Such millennial-scale climatic changes were also recognized in southern Europe and are likely related to shifts in climate systems such as AO (Arctic Oscillations).


2020 ◽  
Author(s):  
Takuya Itaki ◽  
Sakura Utsuki ◽  
Yuki Haneda ◽  
Kentaro Izumi ◽  
Yoshimi Kubota ◽  
...  

Abstract A high-resolution radiolarian record from 800 to 750 ka was examined from the Chiba composite section (CbCS) of the Kokumoto Formation, including the GSSP (Global Boundary Stratotype Section and Point) for the Lower–Middle Pleistocene boundary, on the Boso Peninsula, Pacific side of central Japan. Total radiolarian abundance was closely related to biological productivity in the surface layer and was observed to increase and repeatedly decrease in the millennial-scale period. Summer SST (sea-surface temperature), which was estimated based on the radiolarian assemblage, was 19°C at the end of MIS-20 (790-793 ka) and fluctuated between 21 and 26°C during MIS-19, with the warm periods tending to be synchronous with high productivity. Recent observations have revealed that productivity increases with a northward shift of the Kuroshio along the Kuroshio-Oyashio boundary zone. Therefore, high productivity in the warmer and stratified conditions during MIS-19 can be interpreted as being closely related to millennial-scale oscillations of the Kuroshio Extension. Such millennial-scale climatic changes were also recognized in southern Europe and are likely related to shifts in climate systems such as AO (Arctic Oscillations) and PDO (Pacific Decadal Oscillations).


Author(s):  
Koji Kameo ◽  
Yoshimi Kubota ◽  
Yuki Haneda ◽  
Yusuke Suganuma ◽  
Makoto Okada

Abstract The Chiba composite section (CbCS), in the middle of the Boso Peninsula in central Japan, was ratified as the Global Boundary Stratotype Section and Point (GSSP) for the Lower–Middle Pleistocene boundary, accompanied by the Matuyama–Brunhes (M–B) paleomagnetic polarity boundary in January 2020. This study examined the calcareous nannofossil biostratigraphy of the CbCS to describe potential nannofossil events and discuss sea-surface environments around the M–B paleomagnetic polarity boundary. There are no clear biohorizons at the M–B paleomagnetic polarity boundary, although a temporary disappearance of Gephyrocapsa specimens (≥ 5 μm in diameter), an important calcareous nannofossil genus in the Pleistocene, occurs just above the Lower–Middle Pleistocene boundary. Although this is a characteristic event around the M–B paleomagnetic polarity boundary, it is unclear whether the event is globally traceable. Changes in the environmental proxy taxa of calcareous nannofossils in the CbCS revealed that sea-surface environments were driven by glacial-interglacial and millennial-scale climate forces. The time-transgressive change of the Tn value, a calcareous nannofossil temperature index, is mostly concordant with the planktonic foraminiferal oxygen isotope fluctuation. Abundant occurrences of a warm-water species, Umbilicosphaera spp., indicate that the Kuroshio Current was strong after ~ 783 ka. Even the strong influence of the Kuroshio Current, cooling events related to southward movements of the Kuroshio Front occurred every 10,000 years based on the presence of a cold-water taxon, Coccolithus pelagicus. Additionally, the inflow of coastal waters strengthened after ~ 778 ka because of abundant occurrences of Helicosphaera spp. Millennial-scale sea-surface changes were also inferred from detected floral fluctuations of less than 10,000 years. Graphical abstract


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Eseroghene J. Balota ◽  
Martin J. Head ◽  
Makoto Okada ◽  
Yusuke Suganuma ◽  
Yuki Haneda

AbstractA dinoflagellate cyst record from the highly resolved Chiba composite section in Japan has been used to reconstruct sea-surface paleoceanographic changes across the Lower–Middle Pleistocene Subseries (Calabrian–Chibanian Stage) boundary at the global stratotype, constituting the first detailed study of this microfossil group from the Pleistocene of the Japanese Pacific margin. Cold, subarctic water masses from 794.2 ka gave way to warming and rapid retreat of the Subpolar Front at 789.3 ka, ~ 2000 years before the end of Marine Isotope Stage (MIS) 20. Throughout the fully interglacial conditions of MIS 19c, assemblages are consistent with warm sea surface temperatures but also reveal instability and latitudinal shifts in the Kuroshio Extension system. The abrupt dominance of Protoceratium reticulatum cysts between 772.9 and 770.4 ka (MIS 19b) registers the influence of cooler, mixed, nutrient-rich waters of the Kuroshio–Oyashio Interfrontal Zone resulting from a southward shift of the Kuroshio Extension. Its onset at 772.9 ka serves as a local ecostratigraphic marker for the Chibanian Stage Global Boundary Stratotype Section and Point (GSSP) which occurs just 1.15 m (= 1300 years) below it. An interval from 770.1 ka to the top of the examined succession at 765.8 ka (MIS 19a) represents warm, presumably stratified but still nutrient-elevated surface waters, indicating a northward shift of the Kuroshio Extension ~ 5 kyrs after the termination of full interglacial conditions on land.


Sign in / Sign up

Export Citation Format

Share Document