scholarly journals Image quality and detectability in Siemens Biograph PET/MRI and PET/CT systems—a phantom study

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Silje Kjærnes Øen ◽  
Lars Birger Aasheim ◽  
Live Eikenes ◽  
Anna Maria Karlberg
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yoko Satoh ◽  
Utaroh Motosugi ◽  
Masamichi Imai ◽  
Yoshie Omiya ◽  
Hiroshi Onishi

Abstract Background Using phantoms and clinical studies in prone hanging breast imaging, we assessed the image quality of a commercially available dedicated breast PET (dbPET) at the detector’s edge, where mammary glands near the chest wall are located. These are compared to supine PET/CT breast images of the same clinical subjects. Methods A breast phantom with four spheres (16-, 10-, 7.5-, and 5-mm diameter) was filled with 18F-fluorodeoxyglucose solution (sphere-to-background activity concentration ratio, 8:1). The spheres occupied five different positions from the top edge to the centre of the detector and were scanned for 5 min in each position. Reconstructed images were visually evaluated, and the contrast-to-noise ratio (CNR), contrast recovery coefficient (CRC) for all spheres, and coefficient of variation of the background (CVB) were calculated. Subsequently, clinical images obtained with standard supine PET/CT and prone dbPET were retrospectively analysed. Tumour-to-background ratios (TBRs) between breast cancer near the chest wall (close to the detector’s edge; peripheral group) and at other locations (non-peripheral group) were compared. The TBR of each lesion was compared between dbPET and PET/CT. Results Closer to the detector’s edge, the CNR and CRC of all spheres decreased while the CVB increased in the phantom study. The disadvantages of this placement were visually confirmed. Regarding clinical images, TBR of dbPET was significantly higher than that of PET/CT in both the peripheral (12.38 ± 6.41 vs 6.73 ± 3.5, p = 0.0006) and non-peripheral (12.44 ± 5.94 vs 7.71 ± 7.1, p = 0.0183) groups. There was no significant difference in TBR of dbPET between the peripheral and non-peripheral groups. Conclusion The phantom study revealed poorer image quality at < 2-cm distance from the detector’s edge than at other more central parts. In clinical studies, however, the visibility of breast lesions with dbPET was the same regardless of the lesion position, and it was higher than that in PET/CT. dbPET has a great potential for detecting breast lesions near the chest wall if they are at least 2 cm from the edge of the FOV, even in young women with small breasts.


2021 ◽  
Vol 8 ◽  
Author(s):  
Olivier Delcroix ◽  
David Bourhis ◽  
Nathalie Keromnes ◽  
Philippe Robin ◽  
Pierre-Yves Le Roux ◽  
...  

Purpose: The aim of this study was to assess image quality and lesion detectability acquired with a digital Positron Emission Tomography/Computed Tomography (PET/CT) Siemens Biograph Vision 600 system.Material and Methods: Consecutive patients who underwent a FDG PET/CT during the first week of use of a digital PET/CT (Siemens Biograph Vision 600) at the nuclear medicine department of the university hospital of Brest were analyzed. PET were realized using list mode acquisition. For all patients, 4 datasets were reconstructed. We determined, according to phantom measurements, an equivalent time acquisition/reconstruction parameters pair of the digital PET/CT corresponding to an analog PET/CT image quality (“analog-like”) as reference dataset. We compared the reference dataset with 3 others digital PET/CT reconstruction parameters, allowing a decrease of emission duration: 60, 90, and 120 s per bed position. Three nuclear medicine physicians evaluated independently, for each dataset, overall image quality [Maximal Intensity Projection (MIP), noise, sharpness] using a 4-point scale. Physicians assessed also lesion detection capability by reporting new visible lesions on each digital datasets with their confidence level in comparison with analog-like dataset.Results: Ninety-eight patients were analyzed. Image quality of MIP (IQMIP), sharpness (IQSHARPNESS), and noise (IQNOISE) of all digital datasets (60, 90, and 120 s) were better than those evaluated with analog-like reconstruction. Moreover, digital PET/CT system improved IQMIP, IQNOISE, and IQSHARPNESS whatever the BMI. Lesion detection capability and confidence level were higher for 60, 90, 120 s per bed position, respectively, than for analog-like images.Conclusion: Our study demonstrated an improvement of image quality and lesion detectability with a digital PET/CT system.


2020 ◽  
Author(s):  
Yoko Satoh ◽  
Utaroh Motosugi ◽  
Masamichi Imai ◽  
Yoshie Omiya ◽  
Hiroshi Onishi

Abstract Background: The dedicated breast positron emission tomography (dbPET) scanner (Elmamo, Shimadzu, Kyoto, Japan) has received approval from the Japanese Pharmaceutical Affairs Law and is commercially available in Japan. We assessed image quality of dbPET at the detector's edge, where the mammary glands near the chest wall are located in phantom and clinical studies.Methods: A breast phantom with four spheres (16, 10, 7.5, and 5 mm diameter) was filled with 18F-fluorodeoxyglucose solution (sphere-to-background ratio, 8:1). The spheres occupied five different positions from the top edge to the centre of the detector and were scanned for 5 min in each position. Reconstructed images were visually evaluated, and the contrast-to-noise ratio (CNR), contrast recovery coefficient (CRC) for the 5-mm sphere, and coefficient of variation of the background (CVB) were calculated. Subsequently, clinical images obtained with standard spine PET/CT and prone dbPET were retrospectively analysed. Tumour-to-background ratios (TBRs) between breast cancer near the chest wall (close to the detector’s edge; peripheral group) and at other locations (non-peripheral group) were compared. The TBR of each lesion was compared between dbPET and PET/computed tomography (CT).Results: Closer to the detector’s edge, the CNR and CRC decreased while the CVB increased in the phantom study. The disadvantages of this placement were visually confirmed. Regarding clinical images, TBR of dbPET was significantly higher than that of PET/CT in both the peripheral (12.38±6.41 vs 6.73±3.5, p=0.0006) and non-peripheral (12.44±5.94 vs 7.71±7.1, p=0.0183) groups. There was no significant difference in TBR of dbPET between the peripheral and non-peripheral groups (12.4±6.4 vs 12.4±5.9, p=0.8261).Conclusion: The phantom study revealed poorer image quality closer to the detector edge at a depth of <2 cm from the detector's edge than at other more central parts. In clinical studies, however, the visibility of breast lesions with dbPET was the same regardless of the lesion position, and it was higher than that in PET/CT. dbPET has a great potential for detecting breast lesions near the chest wall if they are at least 2 cm from the edge of the FOV, even in young women with small breasts.


2014 ◽  
Vol 41 (9) ◽  
pp. 092505 ◽  
Author(s):  
Ching-Ching Yang ◽  
Shu-Hsin Liu ◽  
Greta S. P. Mok ◽  
Tung-Hsin Wu

2020 ◽  
Author(s):  
Yoko Satoh ◽  
Utaroh Motosugi ◽  
Masamichi Imai ◽  
Yoshie Omiya ◽  
Hiroshi Onishi

Abstract Purpose : We assessed image quality of dedicated breast positron emission tomography (dbPET) at the detector's edge by phantom and clinical studies.Methods: A breast phantom with four spheres (16, 10, 7.5, and 5 mm in diameter) was filled with 18 F-fluorodeoxyglucose solution of sphere-to-background ratio was 8:1. It was positioned such that the spheres were five different positions from the top edge to the centre of the detector and scanned for 5 min in each position. Reconstructed images were visually evaluated, and % background variability ( %N 5mm ), % contrast ( %Q H ,5mm ), contrast-to-noise ratio ( Q H ,5mm / N 5mm ), and coefficient of variation of the background ( CV background ) were calculated. Next, tumour-to-background ratios (TBRs) between breast cancer near the chest wall (close to the detector’s edge; peripheral group) and at other locations (non-peripheral group) were compared. The TBR of each lesion was also compared between dbPET and PET/computed tomography (CT).Results: As closer to the detector’s edge, the %N 5mm and CV background increased and %Q H ,5mm and Q H ,5mm / N 5mm decreased in the phantom study. The disadvantages of this placement were visually confirmed. With regard to clinical images, TBR of dbPET was significantly higher than that of PET/CT in both the peripheral (12.1±6.2 vs. 6.5±3.4, p =0.0001) and non-peripheral (13.1±7.1 vs. 7.7±7.4, p =0.0004) groups. There was no significant difference in TBR of dbPET between the peripheral and non-peripheral groups (12.1±6.2 vs. 13.1±7.1, p= 0.6367).Conclusion : In the phantom study, the image quality decreased closer to the detector’s edge than at a depth of 1/8. In clinical studies, however, the lesion detectability of dbPET was the same even if the lesion was close to the detector’s edge or not, and it was higher than that in PET/CT. dbPET has a great potential for detecting breast lesions near the chest wall even in young women with small breasts.


2020 ◽  
Author(s):  
Yoko Satoh ◽  
Utaroh Motosugi ◽  
Masamichi Imai ◽  
Yoshie Omiya ◽  
Hiroshi Onishi

Abstract Background: We assessed image quality of dedicated breast positron emission tomography (dbPET) at the detector's edge by phantom and clinical studies.Methods: A breast phantom with four spheres (16, 10, 7.5, and 5 mm diameter) was filled with 18F-fluorodeoxyglucose solution (sphere-to-background ratio, 8:1). The spheres occupied five different positions from the top edge to the centre of the detector and were scanned for 5 min in each position. Reconstructed images were visually evaluated, and % background variability (%N5mm), % contrast (%QH,5mm), and contrast-to-noise ratio (QH,5mm/N5mm) for the 5 mm sphere; and coefficient of variation of the background (CVbackground) were calculated. Subsequently, clinical cases were analysed. Tumour-to-background ratios (TBRs) between breast cancer near the chest wall (close to the detector’s edge; peripheral group) and at other locations (non-peripheral group) were compared. The TBR of each lesion was compared between dbPET and PET/computed tomography (CT).Results: Closer to the detector’s edge, the %N5mm and CVbackground increased and %QH,5mm and QH,5mm/N5mm decreased in the phantom study. The disadvantages of this placement were visually confirmed. Regarding clinical images, TBR of dbPET was significantly higher than that of PET/CT in both the peripheral (12.1±6.2 vs. 6.5±3.4, p=0.0001) and non-peripheral (13.1±7.1 vs. 7.7±7.4, p=0.0004) groups. There was no significant difference in TBR of dbPET between the peripheral and non-peripheral groups (12.1±6.2 vs. 13.1±7.1, p=0.6367).Conclusion: The phantom study revealed poorer image quality closer to the detector edge at a depth of 1/8 of the axial field of view (FOV) than at other more central parts. In clinical studies, however, lesion detectability of dbPET was the same regardless of the lesion position, and it was higher than that in PET/CT. dbPET has a great potential for detecting breast lesions near the chest wall if they are within the FOV, even in young women with small breasts.


2020 ◽  
Author(s):  
Yoko Satoh ◽  
Utaroh Motosugi ◽  
Masamichi Imai ◽  
Yoshie Omiya ◽  
Hiroshi Onishi

Abstract Background: Using phantoms and clinical studies in prone hanging breast imaging, we assessed the image quality of a commercially available dedicated breast PET (dbPET) at the detector's edge, where mammary glands near the chest wall are located. These are compared to supine PET/CT breast images of the same clinical subjects.Methods: A breast phantom with four spheres (16, 10, 7.5, and 5 mm diameter) was filled with 18F-fluorodeoxyglucose solution (sphere-to-background activity concentration ratio, 8:1). The spheres occupied five different positions from the top edge to the centre of the detector and were scanned for 5 min in each position. Reconstructed images were visually evaluated, and the contrast-to-noise ratio (CNR), contrast recovery coefficient (CRC) for the 5-mm sphere, and coefficient of variation of the background (CVB) were calculated. Subsequently, clinical images obtained with standard supine PET/CT and prone dbPET were retrospectively analysed. Tumour-to-background ratios (TBRs) between breast cancer near the chest wall (close to the detector’s edge; peripheral group) and at other locations (non-peripheral group) were compared. The TBR of each lesion was compared between dbPET and PET/CT.Results: Closer to the detector’s edge, the CNR and CRC decreased while the CVB increased in the phantom study for all sphere sizes. The disadvantages of this placement were visually confirmed. Regarding clinical images, TBR of dbPET was significantly higher than that of PET/CT in both the peripheral (12.38±6.41 vs 6.73±3.5, p=0.0006) and non-peripheral (12.44±5.94 vs 7.71±7.1, p=0.0183) groups. There was no significant difference in TBR of dbPET between the peripheral and non-peripheral groups.Conclusion: The phantom study revealed poorer image quality at <2 cm distance from the detector's edge than at other more central parts. In clinical studies, however, the visibility of breast lesions with dbPET was the same regardless of the lesion position, and it was higher than that in PET/CT. dbPET has a great potential for detecting breast lesions near the chest wall if they are at least 2 cm from the edge of the FOV, even in young women with small breasts.


2021 ◽  
Author(s):  
Pengcheng Hu ◽  
Yiqiu Zhang ◽  
Haojun Yu ◽  
Shuguang Chen ◽  
Hui Tan ◽  
...  

Abstract Purpose: The aim of the study was to explore a fast PET scan protocol of the total-body uEXPLORER scanner by assessing the image quality consistent to that of a conventional digital PET/CT scanner both from the phantom and clinical perspectives.Methods: The phantom study using a NEMA/IEC NU-2 body phantom was performed both on a total-body PET/CT (uEXPLORER) and a digital routine PET/CT (uMI 780), with hot sphere to background activity concentration ratio of 4:1. The contrast recovery coefficient (CRC), background variability (BV), recovery coefficient RCmax and RCmean were assessed and compared between that in uEXPLORER with the different scanning duration and reconstruction protocols and that in uMI 780 with clinical settings. The coefficient of variation (COV) of the uMI 780 with clinical settings were calculated and used as a threshold to determine the optimized scanning duration and reconstruction protocols were, which can provide a consistent image quality for the two scanners. And subsequently, the proposed protocol was validated by 30 oncological patients. Images acquired in uMI 780 with a 2-3 minute for each bed position were referred as G780. All PET raw data were reconstructed using data-cutting technique to simulate a 30s, 45s or 60s acquisition duration on uEXPLORER. The iterations were 2 and 3 for uEXPLORER, referred as G30s_3i, G45s_2i, G45s_3i, G60s_2i, and G60s_3i. A 5-point Likert scale was used in the qualitative analysis to assess the image quality. The image quality was also compared with the liver COV, the lesion target-to-background ratio (TBR), and the lesion signal-to-noise ratio (SNR).Results: In the phantom study, CRC, BV, RCmax and RCmean in uEXPLORER with different scanning duration and reconstruction iterations were compared with that in uMI 780 with clinical settings and a minor fluctuation was found among different scanning durations. COV of the uMI 780 with clinical settings was 11.6% and determined protocol with a 30-45s scanning duration and 2 or 3 iterations to provide a similar image quality.In the quantitative analysis on the clinical images, there was no significant difference between G780 and G45s_3i. All the other groups in uEXPLORER with a 45s- and above acquisition showed a significantly improved image quality than that in uMI 780 with clinical settings. Comparing the liver COV, there was no significantly difference between G780 and G30s_3i. And no significant difference in lesion TBR was identified between G780 and G45s_2i, while uEXPLORER had a better performance in lesion SNR compared to that in uMI 780 with clinical settings. Conclusions: This study demonstrated a fast PET protocol with a 30-45s acquisition in uEXPLORER with consistent image quality to that in uMI 780 with clinical settings.


2020 ◽  
Author(s):  
PF Costa ◽  
F Süßelbeck ◽  
A Bramer ◽  
M Conti ◽  
M Weber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document