scholarly journals Prevention of trigeminocardiac reflex-induced severe bradycardia during cerebral aneurysm clipping surgery by topical anesthesia of the dura surface and atropine administration: a case report

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Akari Yoshida ◽  
Takafumi Seki ◽  
Yuichi Aratani ◽  
Tadashi Tanioku ◽  
Tomoyuki Kawamata

Abstract Background Trigeminocardiac reflex (TCR) by stimulation of the sensory branch of the trigeminal nerve induces transient bradycardia and hypotension. We report a case in which light mechanical stimulation to the dura mater during brain surgery induced severe bradycardia. Case presentation A 77-year-old woman with bradycardia-tachycardia syndrome was scheduled for clipping of an unruptured left middle cerebral artery aneurysm. General anesthesia was performed with propofol, remifentanil, and rocuronium. Before starting surgery, the function of the pyramidal tract was examined by motor evoked potential. Transcranial electric stimulation for motor evoked potential induced atrial fibrillation and tachycardia. Continuous administration of landiolol was started and verapamil was used for tachycardia. During detachment of the dura mater from the bone, an electrocardiogram suddenly showed sinus arrest for 6 s. Immediately after the manipulation was interrupted, a junctional rhythm appeared. However, light touch to the dura mater induced severe bradycardia again, and atropine was therefore administered. In addition, the dura surface was anesthetized with topical lidocaine infiltration. After that, light touch-induced bradycardia was prevented. Conclusions We experienced a case of severe bradycardia during surgery due to TCR caused by light mechanical stimulation to the dura mater. Topical anesthesia of the dura surface and atropine administration were effective for preventing TCR-induced bradycardia.

Neurosurgery ◽  
2004 ◽  
Vol 54 (4) ◽  
pp. 916-924 ◽  
Author(s):  
Alfredo Quiñones-Hinojosa ◽  
Mirza Alam ◽  
Russ Lyon ◽  
Charles D. Yingling ◽  
Michael T. Lawton

Abstract OBJECTIVE Microsurgical clipping of basilar artery aneurysms carries a risk of neurological compromise resulting from midbrain or thalamic ischemia. Somatosensory evoked potential (SSEP) monitoring and electroencephalography are the standard techniques for assessing the level of cerebroprotective anesthesia and monitoring ischemia during temporary occlusion or after permanent clipping. Transcranial motor evoked potential (TcMEP) monitoring was added to determine whether this modality improved intraoperative monitoring. METHODS Combined SSEP/electroencephalographic/TcMEP monitoring was used for 30 consecutive patients with basilar artery apex aneurysms in the past 1.5 years. Voltage thresholds were recorded before, during, and after aneurysm treatment for the last 10 patients. RESULTS All 30 patients underwent an orbitozygomatic craniotomy for clipping (28 patients), wrapping (1 patient), or superficial temporal artery-superior cerebellar artery bypass (1 patient). Electrophysiological changes occurred for 10 patients (33%), elicited by temporary clipping (6 patients), permanent clipping (3 patients), or retraction (1 patient). Isolated SSEP changes were observed for one patient, isolated TcMEP changes for five patients, and changes in both TcMEPs and SSEPs for four patients. Among patients with simultaneous changes, TcMEP abnormalities were more robust and occurred earlier than SSEP abnormalities. Impaired motor conduction was detected first with an increase in the voltage threshold (from 206 ± 22 to 410 ± 49 V, P < 0.05, n = 3) and then with loss of TcMEP responses. SSEP and TcMEP signals returned to baseline values for all patients after corrective measures were taken. CONCLUSION TcMEP monitoring can be safely and easily added to traditional neurophysiological monitoring during basilar artery aneurysm surgery. These results suggest that TcMEPs may be more sensitive than SSEPs to basilar artery and perforating artery ischemia. This additional intraoperative information might minimize the incidence of ischemic complications attributable to prolonged temporary occlusion or inadvertent perforator occlusion.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Davide Giampiccolo ◽  
Cristiano Parisi ◽  
Pietro Meneghelli ◽  
Vincenzo Tramontano ◽  
Federica Basaldella ◽  
...  

Abstract Muscle motor-evoked potentials are commonly monitored during brain tumour surgery in motor areas, as these are assumed to reflect the integrity of descending motor pathways, including the corticospinal tract. However, while the loss of muscle motor-evoked potentials at the end of surgery is associated with long-term motor deficits (muscle motor-evoked potential-related deficits), there is increasing evidence that motor deficit can occur despite no change in muscle motor-evoked potentials (muscle motor-evoked potential-unrelated deficits), particularly after surgery of non-primary regions involved in motor control. In this study, we aimed to investigate the incidence of muscle motor-evoked potential-unrelated deficits and to identify the associated brain regions. We retrospectively reviewed 125 consecutive patients who underwent surgery for peri-Rolandic lesions using intra-operative neurophysiological monitoring. Intraoperative changes in muscle motor-evoked potentials were correlated with motor outcome, assessed by the Medical Research Council scale. We performed voxel–lesion–symptom mapping to identify which resected regions were associated with short- and long-term muscle motor-evoked potential-associated motor deficits. Muscle motor-evoked potentials reductions significantly predicted long-term motor deficits. However, in more than half of the patients who experienced long-term deficits (12/22 patients), no muscle motor-evoked potential reduction was reported during surgery. Lesion analysis showed that muscle motor-evoked potential-related long-term motor deficits were associated with direct or ischaemic damage to the corticospinal tract, whereas muscle motor-evoked potential-unrelated deficits occurred when supplementary motor areas were resected in conjunction with dorsal premotor regions and the anterior cingulate. Our results indicate that long-term motor deficits unrelated to the corticospinal tract can occur more often than currently reported. As these deficits cannot be predicted by muscle motor-evoked potentials, a combination of awake and/or novel asleep techniques other than muscle motor-evoked potentials monitoring should be implemented.


2021 ◽  
pp. 1-8
Author(s):  
Hao You ◽  
Xing Fan ◽  
Jiajia Liu ◽  
Dongze Guo ◽  
Zhibao Li ◽  
...  

OBJECTIVE The current study investigated the correlation between intraoperative motor evoked potential (MEP) and somatosensory evoked potential (SSEP) monitoring and both short-term and long-term motor outcomes in aneurysm patients treated with surgical clipping. Moreover, the authors provide a relatively optimal neurophysiological predictor of postoperative motor deficits (PMDs) in patients with ruptured and unruptured aneurysms. METHODS A total of 1017 patients (216 with ruptured aneurysms and 801 with unruptured aneurysms) were included. Patient demographic characteristics, clinical features, intraoperative monitoring data, and follow-up data were retrospectively reviewed. The efficacy of using changes in MEP/SSEP to predict PMDs was assessed using binary logistic regression analysis. Subsequently, receiver operating characteristic curve analysis was performed to determine the optimal critical value for duration of MEP/SSEP deterioration. RESULTS Both intraoperative MEP and SSEP monitoring were significantly effective for predicting short-term (p < 0.001 for both) and long-term (p < 0.001 for both) PMDs in aneurysm patients. The critical values for predicting short-term PMDs were amplitude decrease rates of 57.30% for MEP (p < 0.001 and area under the curve [AUC] 0.732) and 64.10% for SSEP (p < 0.001 and AUC 0.653). In patients with an unruptured aneurysm, the optimal critical values for predicting short-term PMDs were durations of deterioration of 17 minutes for MEP (p < 0.001 and AUC 0.768) and 21 minutes for SSEP (p < 0.001 and AUC 0.843). In patients with a ruptured aneurysm, the optimal critical values for predicting short-term PMDs were durations of deterioration of 12.5 minutes for MEP (p = 0.028 and AUC 0.706) and 11 minutes for SSEP (p = 0.043 and AUC 0.813). CONCLUSIONS The authors found that both intraoperative MEP and SSEP monitoring are useful for predicting short-term and long-term PMDs in patients with unruptured and ruptured aneurysms. The optimal intraoperative neuromonitoring method for predicting PMDs varies depending on whether the aneurysm has ruptured or not.


Sign in / Sign up

Export Citation Format

Share Document