brain tumour
Recently Published Documents


TOTAL DOCUMENTS

1669
(FIVE YEARS 498)

H-INDEX

64
(FIVE YEARS 8)

Author(s):  
Layth Kamil Adday Almajmaie ◽  
Ahmed Raad Raheem ◽  
Wisam Ali Mahmood ◽  
Saad Albawi

<span>The segmented brain tissues from magnetic resonance images (MRI) always pose substantive challenges to the clinical researcher community, especially while making precise estimation of such tissues. In the recent years, advancements in deep learning techniques, more specifically in fully convolution neural networks (FCN) have yielded path breaking results in segmenting brain tumour tissues with pin-point accuracy and precision, much to the relief of clinical physicians and researchers alike. A new hybrid deep learning architecture combining SegNet and U-Net techniques to segment brain tissue is proposed here. Here, a skip connection of the concerned U-Net network was suitably explored. The results indicated optimal multi-scale information generated from the SegNet, which was further exploited to obtain precise tissue boundaries from the brain images. Further, in order to ensure that the segmentation method performed better in conjunction with precisely delineated contours, the output is incorporated as the level set layer in the deep learning network. The proposed method primarily focused on analysing brain tumor segmentation (BraTS) 2017 and BraTS 2018, dedicated datasets dealing with MRI brain tumour. The results clearly indicate better performance in segmenting brain tumours than existing ones.</span>


2022 ◽  
Vol 162 ◽  
pp. 206-208
Author(s):  
Charbel Skayem ◽  
Gabriel Garcia ◽  
Jacques Grill ◽  
Nozar Aghakhani ◽  
Caroline Robert
Keyword(s):  

Computers ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Dillip Ranjan Nayak ◽  
Neelamadhab Padhy ◽  
Pradeep Kumar Mallick ◽  
Dilip Kumar Bagal ◽  
Sachin Kumar

Deep learning has surged in popularity in recent years, notably in the domains of medical image processing, medical image analysis, and bioinformatics. In this study, we offer a completely autonomous brain tumour segmentation approach based on deep neural networks (DNNs). We describe a unique CNN architecture which varies from those usually used in computer vision. The classification of tumour cells is very difficult due to their heterogeneous nature. From a visual learning and brain tumour recognition point of view, a convolutional neural network (CNN) is the most extensively used machine learning algorithm. This paper presents a CNN model along with parametric optimization approaches for analysing brain tumour magnetic resonance images. The accuracy percentage in the simulation of the above-mentioned model is exactly 100% throughout the nine runs, i.e., Taguchi’s L9 design of experiment. This comparative analysis of all three algorithms will pique the interest of readers who are interested in applying these techniques to a variety of technical and medical challenges. In this work, the authors have tuned the parameters of the convolutional neural network approach, which is applied to the dataset of Brain MRIs to detect any portion of a tumour, through new advanced optimization techniques, i.e., SFOA, FBIA and MGA.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Derek S. Tsang ◽  
Grace Tsui ◽  
Chris McIntosh ◽  
Thomas Purdie ◽  
Glenn Bauman ◽  
...  

Abstract Purpose High-quality radiotherapy (RT) planning for children and young adults with primary brain tumours is essential to minimize the risk of late treatment effects. The feasibility of using automated machine-learning (ML) to aid RT planning in this population has not previously been studied. Methods and materials We developed a ML model that identifies learned relationships between image features and expected dose in a training set of 95 patients with a primary brain tumour treated with focal radiotherapy to a dose of 54 Gy in 30 fractions. This ML method was then used to create predicted dose distributions for 15 previously-treated brain tumour patients across two institutions, as a testing set. Dosimetry to target volumes and organs-at-risk (OARs) were compared between the clinically-delivered (human-generated) plans versus the ML plans. Results The ML method was able to create deliverable plans in all 15 patients in the testing set. All ML plans were generated within 30 min of initiating planning. Planning target volume coverage with 95% of the prescription dose was attained in all plans. OAR doses were similar across most structures evaluated; mean doses to brain and left temporal lobe were lower in ML plans than manual plans (mean difference to left temporal, – 2.3 Gy, p = 0.006; mean differences to brain, – 1.3 Gy, p = 0.017), whereas mean doses to right cochlea and lenses were higher in ML plans (+ 1.6–2.2 Gy, p < 0.05 for each). Conclusions Use of an automated ML method to aid RT planning for children and young adults with primary brain tumours is dosimetrically feasible and can be successfully used to create high-quality 54 Gy RT plans. Further evaluation after clinical implementation is planned.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Anthony Byrne ◽  
Anna Torrens-Burton ◽  
Stephanie Sivell ◽  
Fabio Ynoe Moraes ◽  
Helen Bulbeck ◽  
...  

Author(s):  
Miss Kashmira. A. Kulkarni

Abstract: Medical Image Processing is one of the most challenging and emerging fields. MRI, CT scan , ultra scan, X-rays etc. are different machines to diagnose the condition of the patient. Human body is made up of several types of cells. Brain is a highly specialized and sensitive organ of human body. Brain tumour is one of the severe problems in the medical science. MRI imaging is often used when treating brain tumour. There are various image segmentation algorithms in order to detect brain tumour using image processing. Firstly quality of scanned MRI image is enhanced and then different image segmentation techniques are applied to detect the tumour in the scanned image. Different segmentation methods reviewed here are thresholding, kmeans, watershed, edge detection, morphological, fuzzy c-means. Here sample 5 MRI images are taken and processed by using MATLAB software. With the help of these techniques, area of the tumour, execution time, number pixel can be determined. Keywords: MATLAB, segmentation, thresholding , kmeans, watershed, edge detection, morphological, fuzzy c-means.


Author(s):  
Sanjay Kumar ◽  
Sanjeev Kumar Singh ◽  
Naresh Kumar ◽  
Kuldeep Singh Kaswan ◽  
Inderpreet Kaur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document