scholarly journals The combined role of MR spectroscopy and perfusion imaging in preoperative differentiation between high- and low-grade gliomas

Author(s):  
Abdel-Monem S. Hasan ◽  
Abdel Karem Hasan ◽  
Hasan I. Megally ◽  
Mohammed Khallaf ◽  
Abolhasan Haseib

Abstract Background Brain tumors are an important health problem. The preoperative classification of gliomas by non-invasive techniques is a significant problem. Relative cerebral blood volume and spectroscopy have the ability to sample the entire lesion non-invasively. The present study aims to evaluate the combined role of dynamic susceptibility perfusion and spectroscopy in the classification of primary brain tumors. The combination of both provides overall diagnostic accuracy (100%). Relative cerebral blood volume in peritumoral region plays an important additional role in this regard. Results On the basis of histopathology, among 50 patients with brain tumors, high-grade gliomas accounted for 58%, while low-grade gliomas accounted for 42%. The relative cerebral blood volume in the tumor had the best sensitivity, specificity, and accuracy of 96.8%, 95.3%, and 96, respectively. The use of relative cerebral blood volume and choline/N-acetyl Aspartate increased diagnostic accuracy by 100%. Conclusion The combination of magnetic resonance spectroscopy and perfusion can increase sensitivity and positive predictive value to define the degree of glioma.

Author(s):  
Mohamed Saied Abdelgawad ◽  
Mohamed Hamdy Kayed ◽  
Mohamed Ihab Samy Reda ◽  
Eman Abdelzaher ◽  
Ahmed Hafez Farhoud ◽  
...  

Abstract Background Non-neoplastic brain lesions can be misdiagnosed as low-grade gliomas. Conventional magnetic resonance (MR) imaging may be non-specific. Additional imaging modalities such as spectroscopy (MRS), perfusion and diffusion imaging aid in diagnosis of such lesions. However, contradictory and overlapping results are still present. Hence, our purpose was to evaluate the role of advanced neuro-imaging in differentiation between low-grade gliomas (WHO grade II) and MR morphologically similar non-neoplastic lesions and to prove which modality has the most accurate results in differentiation. Results All patients were classified into two main groups: patients with low-grade glioma (n = 12; mean age, 38.8 ± 16; 8 males) and patients with non-neoplastic lesions (n = 27; mean age, 36.6 ± 15; 19 males) based on the histopathological and clinical–radiological diagnosis. Using ROC curve analysis, a threshold value of 0.93 for rCBV (AUC = 0.875, PPV = 92%, NPV = 71.4%) and a threshold value of 2.5 for Cho/NAA (AUC = 0.829, PPV = 92%, NPV = 71.4%) had 85.2% sensitivity and 83.3% specificity for predicting neoplastic lesions. The area under the curve (AUC) of ROC analysis was good for relative cerebral blood volume (rCBV) and Cho/NAA ratios (> 0.80) and fair for Cho/Cr and NAA/Cr ratios (0.70–0.80). When the rCBV measurements were combined with MRS ratios, significant improvement was observed in the area under the curve (AUC) (0.969) with improved diagnostic accuracy (89.7%) and sensitivity (88.9%). Conclusions Evaluation of rCBV and metabolite ratios at MRS, particularly Cho/NAA ratio, may be helpful in differentiating low-grade gliomas from non-neoplastic lesions. The combination of dynamic susceptibility contrast (DSC) perfusion and MRS can significantly improve the diagnostic accuracy and can help avoiding the need for an invasive biopsy.


2010 ◽  
Vol 73 (2) ◽  
pp. 215-220 ◽  
Author(s):  
Gisele B. Caseiras ◽  
Sophie Chheang ◽  
James Babb ◽  
Jeremy H. Rees ◽  
Nicole Pecerrelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document