glioma grading
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 55)

H-INDEX

22
(FIVE YEARS 5)

Author(s):  
Sanjeet Pandey

Abstract: Brain is recognized as one of the complex organ of the human body. Abnormal formation of cells may affect the normal functioning of the brain. These abnormal cells may belong to category of benign cells resulting in low grade glioma or malignant cells resulting in high grade glioma. The treatment plans vary according to grade of glioma detected. This results in need of precise glioma grading. As per World Health Organization, biopsy is considered to be gold standard in glioma grading. Biopsy is an invasive procedure which may contains sampling errors. Biopsy may also contain subjectivity errors. This motivated the clinician to look for other methods which may overcome the limitations of biopsy reports. Machine learning and deep learning approaches using MRI is considered to be most promising alternative approach reported by scientist in literature. The presented work were based on the concept of AdaBoost approach which is an ensemble learning approach. The developed model was optimized w.r.t to two hyper parameters i.e. no. of estimators and learning rate keeping the base model fixed. The decision tree was used as a base model. The proposed developed model was trained and validated on BraTS 2018 dataset. The developed optimized model achieves reasonable accuracy in carrying out classification task i.e. high grade glioma vs. low grade glioma. Keywords: High grade glioma, low grade glioma, AdaBoost, Texture Features,


2021 ◽  
Vol 27 (4) ◽  
pp. 261-269
Author(s):  
Amir Khorasani ◽  
Mohamad Bagher Tavakoli ◽  
Masih Saboori

Abstract Introduction: Based on the tumor’s growth potential and aggressiveness, glioma is most often classified into low or high-grade groups. Traditionally, tissue sampling is used to determine the glioma grade. The aim of this study is to evaluate the efficiency of the Laplacian Re-decomposition (LRD) medical image fusion algorithm for glioma grading by advanced magnetic resonance imaging (MRI) images and introduce the best image combination for glioma grading. Material and methods: Sixty-one patients (17 low-grade and 44 high-grade) underwent Susceptibility-weighted image (SWI), apparent diffusion coefficient (ADC) map, and Fluid attenuated inversion recovery (FLAIR) MRI imaging. To fuse different MRI image, LRD medical image fusion algorithm was used. To evaluate the effectiveness of LRD in the classification of glioma grade, we compared the parameters of the receiver operating characteristic curve (ROC). Results: The average Relative Signal Contrast (RSC) of SWI and ADC maps in high-grade glioma are significantly lower than RSCs in low-grade glioma. No significant difference was detected between low and high-grade glioma on FLAIR images. In our study, the area under the curve (AUC) for low and high-grade glioma differentiation on SWI and ADC maps were calculated at 0.871 and 0.833, respectively. Conclusions: By fusing SWI and ADC map with LRD medical image fusion algorithm, we can increase AUC for low and high-grade glioma separation to 0.978. Our work has led us to conclude that, by fusing SWI and ADC map with LRD medical image fusion algorithm, we reach the highest diagnostic accuracy for low and high-grade glioma differentiation and we can use LRD medical fusion algorithm for glioma grading.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zeina A. Shboul ◽  
Norou Diawara ◽  
Arastoo Vossough ◽  
James Y. Chen ◽  
Khan M. Iftekharuddin

RNA sequencing (RNAseq) is a recent technology that profiles gene expression by measuring the relative frequency of the RNAseq reads. RNAseq read counts data is increasingly used in oncologic care and while radiology features (radiomics) have also been gaining utility in radiology practice such as disease diagnosis, monitoring, and treatment planning. However, contemporary literature lacks appropriate RNA-radiomics (henceforth, radiogenomics) joint modeling where RNAseq distribution is adaptive and also preserves the nature of RNAseq read counts data for glioma grading and prediction. The Negative Binomial (NB) distribution may be useful to model RNAseq read counts data that addresses potential shortcomings. In this study, we propose a novel radiogenomics-NB model for glioma grading and prediction. Our radiogenomics-NB model is developed based on differentially expressed RNAseq and selected radiomics/volumetric features which characterize tumor volume and sub-regions. The NB distribution is fitted to RNAseq counts data, and a log-linear regression model is assumed to link between the estimated NB mean and radiomics. Three radiogenomics-NB molecular mutation models (e.g., IDH mutation, 1p/19q codeletion, and ATRX mutation) are investigated. Additionally, we explore gender-specific effects on the radiogenomics-NB models. Finally, we compare the performance of the proposed three mutation prediction radiogenomics-NB models with different well-known methods in the literature: Negative Binomial Linear Discriminant Analysis (NBLDA), differentially expressed RNAseq with Random Forest (RF-genomics), radiomics and differentially expressed RNAseq with Random Forest (RF-radiogenomics), and Voom-based count transformation combined with the nearest shrinkage classifier (VoomNSC). Our analysis shows that the proposed radiogenomics-NB model significantly outperforms (ANOVA test, p < 0.05) for prediction of IDH and ATRX mutations and offers similar performance for prediction of 1p/19q codeletion, when compared to the competing models in the literature, respectively.


2021 ◽  
Vol 11 (7) ◽  
pp. 2943-2954
Author(s):  
Weibin Gu ◽  
Shiyuan Fang ◽  
Xinyi Hou ◽  
Ding Ma ◽  
Shaowu Li

2021 ◽  
Vol 11 (6) ◽  
pp. 2733-2743
Author(s):  
Lu Yin ◽  
Linggang Cheng ◽  
Fumin Wang ◽  
Xueli Zhu ◽  
Yue Hua ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
pp. 5118
Author(s):  
Hiroto Yamashiro ◽  
Atsushi Teramoto ◽  
Kuniaki Saito ◽  
Hiroshi Fujita

Glioma is the most common type of brain tumor, and its grade influences its treatment policy and prognosis. Therefore, artificial-intelligence-based tumor grading methods have been studied. However, in most studies, two-dimensional (2D) analysis and manual tumor-region extraction were performed. Additionally, deep learning research that uses medical images experiences difficulties in collecting image data and preparing hardware, thus hindering its widespread use. Therefore, we developed a 3D convolutional neural network (3D CNN) pipeline for realizing a fully automated glioma-grading system by using the pretrained Clara segmentation model provided by NVIDIA and our original classification model. In this method, the brain tumor region was extracted using the Clara segmentation model, and the volume of interest (VOI) created using this extracted region was assigned to a grading 3D CNN and classified as either grade II, III, or IV. Through evaluation using 46 regions, the grading accuracy of all tumors was 91.3%, which was comparable to that of the method using multi-sequence. The proposed pipeline scheme may enable the creation of a fully automated glioma-grading pipeline in a single sequence by combining the pretrained 3D CNN and our original 3D CNN.


Sign in / Sign up

Export Citation Format

Share Document