scholarly journals Use of diffusion-weighted imaging and diffusion tensor imaging in assessment of myometrial invasion in patients of endometrial carcinoma and its correlation with histopathological grading (Prospective study)

Author(s):  
Mahmoud Abdel-Latif ◽  
Hebatullah Safwat Mosaad

Abstract Background Endometrial cancer (EMC) is considered one of the most common gynecological cancers worldwide. In particular, the depth of myometrial invasion and histological grade of endometrial cancers (EMCs) are strong prognostic factors. Diffusion tensor measurements as mean diffusivity (MD) and fractional anisotropy (FA) values could be useful for assessing the depth of tumor invasion and its histological grade. The study aimed to evaluate the role of diffusion-weighted imaging (DWI) and diffusion tensor imaging in the detection of myometrial invasion in cases of endometrial carcinoma and prediction of its grade in vivo. Results This study included 50 female patients with pathologically proved endometrial carcinoma, and their ages ranged from 38 to 67 years; the mean age was 56.15 years (± 8.229 standard deviation “SD”). There was a significant statistical difference regarding the mean values of diffusion tensor fractional anisotropy (DT-FA), diffusion tensor mean diffusivity (DT-MD) and diffusion-weighted apparent diffusion coefficient(DW-ADC) values in differentiating between intact and infiltrated myometrium with (P value ≤ 0.001). The accuracy of DT-MD, DT-FA and DWI-ADC was 98%, 90% and 86%, respectively, in the detection of myometrial invasion. There was a statistically significant difference in the mean values of DT-FA, DT-MD and DW-ADC for differentiating endometrioid adenocarcinoma grades with the overall P values (˂0.001). The accuracy of DT-FA, DT- MD and DWI-ADC for differentiating grade 3 from grade 1 or 2 endometrioid adenocarcinoma was 94.9%, 84.6% and 74.4%, respectively. For differentiating grade 1 from grade 2 or 3 endometrioid adenocarcinoma, the accuracy of DT-FA, DT-MD and DWI-ADC was 90%, 89.7% and 84.6%, respectively. Mean DT-FA, DT-MD and DW-ADC values were inversely proportional to the degree of pathological grading with r =  − 0.867, − 0.762 and − 0.706, respectively. Conclusion Diffusion tensor imaging and DWI are helpful in the assessment of myometrial invasion and have a high negative correlation with histopathological grading in patients with endometrial cancer.

2019 ◽  
Vol 61 (5) ◽  
pp. 675-684
Author(s):  
Adarsh Ghosh ◽  
Tulika Singh ◽  
Veenu Singla ◽  
Rashmi Bagga ◽  
Radhika Srinivasan ◽  
...  

Background Myoinvasion and tumor-type determines surgical planning in endometrial carcinoma. Purpose To evaluate whole tumor diffusion tensor imaging histogram texture parameters in evaluating myoinvasion and tumor type in endometrial carcinoma. Material and Methods Twenty-seven patients with endometrial carcinoma underwent diffusion tensor imaging on a 1.5-T MRI system using echo-planar imaging sequence with 0 and 700 s/mm2 b values. Whole tumor histogram parameters were obtained from fractional anisotropy, mean diffusivity maps. Mann–Whitney U test and receiver operating characteristic curve analyses were used Results The mean fractional anisotropy of tumors with no myoinvasion was significantly higher than tumors which underwent myoinvasion, suggesting higher anisotropy in tumors which did not invade the myometrium. Voxel-wise heterogeneity in distribution of fractional anisotropy and mean diffusivity was seen in the form of higher uniformity and lower entropy of tumors with superficial <50% myoinvasion versus >50% myoinvasion. Uniformity, entropy, and energy of voxel-wise fractional anisotropy distribution gave an area under the curve of 0.827, 0.821, and 0.796, respectively, in predicting the presence of deep myometrial invasion while energy, entropy, and uniformity of mean diffusivity distribution in tumor gave an area under the curve of 0.84, 0.815, and 0.809 respectively. Tumor type was predicted with an area under the curve of 0.747, 0.759, and 0.765 for the uniformity, energy, and entropy of voxel-wise fractional anisotropy distribution. A logistic regression combining all the important histogram parameters obtained 94% and 88% sensitivity and 88% and 80% specificity in predicting deep myoinvasion and tumor type, respectively. Conclusion Diffusion tensor histogram analysis can better characterize endometrial carcinomas and can be used as a quantitative marker of tumor behavior.


2014 ◽  
Vol 2014 (jun04 1) ◽  
pp. bcr2014204078-bcr2014204078 ◽  
Author(s):  
B. Shankar ◽  
R. Narayanan ◽  
P. Muralitharan ◽  
B. Ulaganathan

2015 ◽  
Vol 2 ◽  
pp. 71-80 ◽  
Author(s):  
Stefano Palmucci ◽  
Giuseppina Cappello ◽  
Giancarlo Attinà ◽  
Pietro Valerio Foti ◽  
Rita Olivia Anna Siverino ◽  
...  

2008 ◽  
Vol 1 (4) ◽  
pp. 263-269 ◽  
Author(s):  
Weihong Yuan ◽  
Scott K. Holland ◽  
Blaise V. Jones ◽  
Kerry Crone ◽  
Francesco T. Mangano

Object Diffusion tensor (DT) imaging was used in children with supratentorial tumors to evaluate the anisotropic diffusion properties between different tumor grades and between tumors and adjacent and contralateral white matter. Methods In this retrospective review, the authors review the cases of 16 children (age range 1–18 years) who presented to their institution with supratentorial tumors and were treated between 2004 and 2007. Eleven patients had low-grade and 5 had high-grade tumors. Fractional anisotropy (FA), mean diffusivity, and axial (λ∥) and radial (λ⊥) eigenvalues within selected regions were studied. Mitotic index, necrosis, and vascularity of the tumors were compared with DT imaging parameters. Results The mean diffusivity was significantly higher in low-grade than in high-grade tumors (p = 0.04); the 2 tumor grades also significantly differed for both λ∥ (p < 0.05) and λ⊥ (p < 0.05). Mean diffusivity values in low-grade tumors were significantly higher than in adjacent normal-appearing white matter (NAWM; p = 0.0004) and contralateral NAWM (p = 0.0001). In both low- and high-grade tumors, the FA was significantly lower than in NAWM (p < 0.0001 and p < 0.03, respectively) and contralateral NAWM (p < 0.0001 and p < 0.003, respectively). Tumor cellularity highly correlated with mean diffusivity and λ∥and λ⊥. Conclusions Diffusion tensor imaging is a useful tool in the evaluation of supratentorial tumors in children. The mean diffusivity appears to be a significant marker in differentiating tumors grades. Findings related to λ∥ and λ⊥ within tumor groups and between tumors and NAWM may be an indirect manifestation of the combined effects of axonal injury, demyelination, and tumor mass within the cranial compartment.


Sign in / Sign up

Export Citation Format

Share Document