scholarly journals Correction to: In silico structural homology modelling of EST073 motif coding protein of tea Camellia sinensis (L)

Author(s):  
K. H. T. Karunarathna ◽  
N. H. K. S. Senathilake ◽  
K. M. Mewan ◽  
O. V. D. S. J. Weerasena ◽  
S. A. C. N. Perera

An amendment to this paper has been published and can be accessed via the original article.

Author(s):  
K. H. T. Karunarathna ◽  
N. H. K. S. Senathilake ◽  
K. M. Mewan ◽  
O. V. D. S. J. Weerasena ◽  
S. A. C. N. Perera

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1257
Author(s):  
Fareena Shahid ◽  
Noreen ◽  
Roshan Ali ◽  
Syed Lal Badshah ◽  
Syed Babar Jamal ◽  
...  

Hepatitis C is affecting millions of people around the globe annually, which leads to death in very high numbers. After many years of research, hepatitis C virus (HCV) remains a serious threat to the human population and needs proper management. The in silico approach in the drug discovery process is an efficient method in identifying inhibitors for various diseases. In our study, the interaction between Epigallocatechin-3-gallate, a component of green tea, and envelope glycoprotein E2 of HCV is evaluated. Epigallocatechin-3-gallate is the most promising polyphenol approved through cell culture analysis that can inhibit the entry of HCV. Therefore, various in silico techniques have been employed to find out other potential inhibitors that can behave as EGCG. Thus, the homology modelling of E2 protein was performed. The potential lead molecules were predicted using ligand-based as well as structure-based virtual screening methods. The compounds obtained were then screened through PyRx. The drugs obtained were ranked based on their binding affinities. Furthermore, the docking of the topmost drugs was performed by AutoDock Vina, while its 2D interactions were plotted in LigPlot+. The lead compound mms02387687 (2-[[5-[(4-ethylphenoxy) methyl]-4-prop-2-enyl-1,2,4-triazol-3-yl] sulfanyl]-N-[3(trifluoromethyl) phenyl] acetamide) was ranked on top, and we believe it can serve as a drug against HCV in the future, owing to experimental validation.


Author(s):  
Amey Sharma ◽  
Apoorva Rana ◽  
Lakshya Mangtani ◽  
Aakanksha Kalra ◽  
Ravi Ranjan Kumar Niraj

Background: Infections caused by drug resistant microorganisms have been increasing worldwide thereby being one of the major causes of morbidity in the 21st century. Klebsiella pneumoniae is one such bacteria causing lung inflammation, lung injury and death. Emergence of hyper-virulent and drug resistant species such as ESBL and CRKP has made this microbe a serious and urgent threat. The pace of emergence of these species is outgrowing the development of novel drug and vaccine candidates thereby focusing on drug repurposing approach. Objective: 1. Homology Modelling of Thymidylate Synthase. 2. Verification of Modelled Structure. 3. Molecular Docking. 4. Molecular Dynamic Simulation of Docked Complex. 5. In vitro analysis of 5-FU activity against Klebsiella pneumonia. Method: The 3-D structure of Thymidylate Synthase was predicted using Swiss-Model server and validated by in silico approaches. - Determination protein-protein interactions using STRING database. - Molecular docking. - MD simulations of 5-FU with predicted structure of thymidylate synthase. - In vitro antimicrobial drug sensitivity assay at different concentrations. Result: Hydrogen bond was observed in Molecular Docking - Protein-ligand complex remains stable during simulation. - 5-FU shows antimicrobial activity against Klebsiella pneumonia during In vitro study. Conclusion: Both In silico as well as in vitro analysis have indicated that 5-FU can potentially be developed as an antimicrobial agent towards Klebsiella pneumonia


Gene ◽  
2019 ◽  
Vol 703 ◽  
pp. 102-111 ◽  
Author(s):  
G.V. Vedamurthy ◽  
Haseen Ahmad ◽  
Suneel Kumar Onteru ◽  
Vijay Kumar Saxena

Sign in / Sign up

Export Citation Format

Share Document