International Geomagnetic Reference Field Revision 1987

Geophysics ◽  
1988 ◽  
Vol 53 (4) ◽  
pp. 576-578 ◽  
Author(s):  
D. R. Barraclough

The International Geomagnetic Reference Field (IGRF) is a series of mathematical models of the main geomagnetic field and its secular variation, the models consisting of sets of spherical harmonic (or Gauss) coefficients. The IGRF has become a widely used means of deriving values of geomagnetic field components in, for example, studies of magnetic anomalies and investigations of charged particle motions in the ionosphere and the magnetosphere.

2020 ◽  
Author(s):  
Ingo Wardinski ◽  
Diana Saturnino ◽  
Hagay Amit ◽  
Aude Chambodut ◽  
Benoit Langlais ◽  
...  

Abstract Observations of the geomagnetic field taken at Earth's surface and at satellite altitude were combined to construct continuous models of the geomagnetic field and its secular variation from 1957 to 2020. From these parent models, we derive candidate main field models for the epochs 2015 and 2020 to the 13th generation of the International Geomagnetic Reference Field (IGRF). The secular variation candidate model for the period 2020 - 2025 is derived from a forecast of the secular variation in 2022.5, which results from a multi-variate singular spectrum analysis of the secular variation from 1957 to 2020.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
I. Wardinski ◽  
D. Saturnino ◽  
H. Amit ◽  
A. Chambodut ◽  
B. Langlais ◽  
...  

Abstract Observations of the geomagnetic field taken at Earth’s surface and at satellite altitude are combined to construct continuous models of the geomagnetic field and its secular variation from 1957 to 2020. From these parent models, we derive candidate main field models for the epochs 2015 and 2020 to the 13th generation of the International Geomagnetic Reference Field (IGRF). The secular variation candidate model for the period 2020–2025 is derived from a forecast of the secular variation in 2022.5, which results from a multi-variate singular spectrum analysis of the secular variation from 1957 to 2020.


2020 ◽  
Author(s):  
Ingo Wardinski ◽  
Diana Saturnino ◽  
Hagay Amit ◽  
Aude Chambodut ◽  
Benoit Langlais ◽  
...  

Abstract Observations of the geomagnetic field taken at Earth's surface and at satellite altitude are combined to construct continuous models of the geomagnetic field and its secular variation from 1957 to 2020. From these parent models, we derive candidate main field models for the epochs 2015 and 2020 to the 13th generation of the International Geomagnetic Reference Field (IGRF). The secular variation candidate model for the period 2020 - 2025 is derived from a forecast of the secular variation in 2022.5, which results from a multi-variate singular spectrum analysis of the secular variation from 1957 to 2020.


2020 ◽  
Author(s):  
Patrick Alken ◽  
Erwan Thebault ◽  
Ciaran Beggan ◽  
Julien Aubert ◽  
Julien Baerenzung ◽  
...  

Abstract In December 2019, the 13th revision of the International Geomagnetic Reference Field (IGRF) was released by the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group V-MOD. This revision comprises two new spherical harmonic main field models for epochs 2015.0 (DGRF-2015) and 2020.0 (IGRF-2020) and a model of the predicted secular variation for the interval 2020.0 to 2025.0 (SV-2020-2025). The models were produced from candidates submitted by fifteen international teams. These teams were led by the British Geological Survey (UK), China Earthquake Administration (China), Universidad Complutense de Madrid (Spain), University of Colorado Boulder (USA), Technical University of Denmark (Denmark), GFZ German Research Centre for Geosciences (Germany), Institut de physique du globe de Paris (France), Institut des Sciences de la Terre (France), Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (Russia), Kyoto University (Japan), University of Leeds (UK), Max Planck Institute for Solar System Research (Germany), NASA Goddard Space Flight Center (USA), University of Potsdam (Germany), and Universit\'e de Strasbourg (France). The candidate models were evaluated individually and compared to all other candidates as well to the mean, median and a robust Huber-weighted model of all candidates. These analyses were used to identify, for example, the variation between the Gauss coefficients or the geographical regions where the candidate models strongly differed. The majority of candidates were sufficiently close that the differences can be explained primarily by individual modeling methodologies and data selection strategies. None of the candidates were so different as to warrant their exclusion from the final IGRF-13. The IAGA V-MOD task force thus voted for two approaches: the median of the Gauss coefficients of the candidates for the DGRF-2015 and IGRF-2020 models and the robust Huber-weighted model for the predictive SV-2020-2025. In this paper, we document the evaluation of the candidate models and provide details of the approach used to derive the final IGRF-13 products. We also perform a retrospective analysis of the IGRF-12 SV candidates over their performance period (2015-2020). Our findings suggest that forecasting secular variation can benefit from combining physics-based core modeling with satellite observations.


Geophysics ◽  
1986 ◽  
Vol 51 (4) ◽  
pp. 1020-1023 ◽  
Author(s):  
◽  
Norman W. Peddie

IAGA Division I, Working Group 1 deals with the topic “Analysis of the Main Field and Secular Variations.” One of the more important functions of the working group is the periodic revision of the International Geomagnetic Reference Field (IGRF). The thirteen members of the working group have professional interests covering a broad spectrum of geomagnetic science, including the theory and practice of geomagnetic analysis and modeling, the theory of the origin of the magnetic fields of the Earth and other bodies, the theory of geomagnetic secular variation, the application of field models in magnetic survey data processing, and geomagnetic charting.


Sign in / Sign up

Export Citation Format

Share Document