Facies analysis: Integration of core and log data using a neural network as input for reservoir modeling in Betty Field, Malaysia

2004 ◽  
Vol 23 (8) ◽  
pp. 794-797 ◽  
Author(s):  
Tanwi Basu ◽  
Michel Claverie ◽  
David Nolan ◽  
Kamarolzaman B. Yahya ◽  
Mustafa Suleiman
2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Tamer Moussa ◽  
Salaheldin Elkatatny ◽  
Mohamed Mahmoud ◽  
Abdulazeez Abdulraheem

Permeability is a key parameter related to any hydrocarbon reservoir characterization. Moreover, many petroleum engineering problems cannot be precisely answered without having accurate permeability value. Core analysis and well test techniques are the conventional methods to determine permeability. These methods are time-consuming and very expensive. Therefore, many researches have been introduced to identify the relationship between core permeability and well log data using artificial neural network (ANN). The objective of this research is to develop a new empirical correlation that can be used to determine the reservoir permeability of oil wells from well log data, namely, deep resistivity (RT), bulk density (RHOB), microspherical focused resistivity (RSFL), neutron porosity (NPHI), and gamma ray (GR). A self-adaptive differential evolution integrated with artificial neural network (SaDE-ANN) approach and evolutionary algorithm-based symbolic regression (EASR) techniques were used to develop the correlations based on 743 actual core permeability measurements and well log data. The obtained results showed that the developed correlations using SaDE-ANN models can be used to predict the reservoir permeability from well log data with a high accuracy (the mean square error (MSE) was 0.0638 and the correlation coefficient (CC) was 0.98). SaDE-ANN approach is more accurate than the EASR. The introduced technique and empirical correlations will assist the petroleum engineers to calculate the reservoir permeability as a function of the well log data. This is the first time to implement and apply SaDE-ANN approaches to estimate reservoir permeability from well log data (RSFL, RT, NPHI, RHOB, and GR). Therefore, it is a step forward to eliminate the required lab measurements for core permeability and discover the capabilities of optimization and artificial intelligence models as well as their application in permeability determination. Outcomes of this study could help petroleum engineers to have better understanding of reservoir performance when lab data are not available.


Author(s):  
Xi Li ◽  
Ting Wang ◽  
Shexiong Wang

It draws researchers’ attentions how to make use of the log data effectively without paying much for storing them. In this paper, we propose pattern-based deep learning method to extract the features from log datasets and to facilitate its further use at the reasonable expense of the storage performances. By taking the advantages of the neural network and thoughts to combine statistical features with experts’ knowledge, there are satisfactory results in the experiments on some specified datasets and on the routine systems that our group maintains. Processed on testing data sets, the model is 5%, at least, more likely to outperform its competitors in accuracy perspective. More importantly, its schema unveils a new way to mingle experts’ experiences with statistical log parser.


2013 ◽  
Author(s):  
Mohammed Ismail Syed ◽  
Chintamani Vemparala ◽  
Romain Baillet ◽  
Nicolas Desgoutte ◽  
Aurélie Pujol ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document