An improved plane wave prestack depth migration method

2001 ◽  
Author(s):  
Peiyong Sun ◽  
Shulun Zhang ◽  
Jingxia Zhao
2003 ◽  
Vol 46 (6) ◽  
pp. 1176-1185 ◽  
Author(s):  
Shengchang CHEN ◽  
Jingzhong CAO ◽  
Zaitian MA

2015 ◽  
Author(s):  
Jidong Yang* ◽  
Jianping Huang ◽  
Xin Wang ◽  
Zhenchun Li

2011 ◽  
Vol 54 (6) ◽  
pp. 844-855
Author(s):  
Li-Nong LIU ◽  
Jian-Feng ZHANG

Geophysics ◽  
2005 ◽  
Vol 70 (1) ◽  
pp. S30-S37 ◽  
Author(s):  
Xiao-Bi Xie ◽  
Ru-Shan Wu

A 3D multicomponent prestack depth-migration method is presented. An elastic-screen propagator based on one-way wave propagation with a wide-angle correction is used to extrapolate both source and receiver wavefields. The elastic-screen propagator neglects backscattered waves but can handle forward multiple-scattering effects, such as focusing/defocusing, diffraction, interference, and conversions between P- and S-waves. Vector-imaging conditions are used to generate a P-P image and a P-S converted-wave image. The application of the multicomponent elastic propagator and vector-imaging condition preserves more information carried by the elastic waves. It also solves the polarization problem of converted-wave imaging. Partial images from different sources with correct polarizations can be stacked to generate a final image. Numerical examples using 2D synthetic data sets are presented to show the feasibility of this method.


2001 ◽  
Vol 44 (5) ◽  
pp. 692-698 ◽  
Author(s):  
Sheng-Chang CHEN ◽  
Jing-Zhong CAO ◽  
Zai-Tian MA

2009 ◽  
Author(s):  
Changlong Wang ◽  
Chengxiang Wang ◽  
Jianlei Zhang ◽  
Shihu Wang ◽  
Shaohui Jiang

1997 ◽  
Author(s):  
Jacques Négron ◽  
François Audebert ◽  
Pascal Froidevaux ◽  
Gilles Darche

2007 ◽  
Author(s):  
Chaoshun Hu ◽  
Mrinal K. Sen ◽  
Paul Stoffa ◽  
Kirk McIntosh

Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. S185-S197 ◽  
Author(s):  
Bertrand Duquet ◽  
Patrick Lailly

Full-volume seismic imaging is essential for a sound interpretation of structurally complex geologies. Prestack depth imaging is the most appropriate tool for such imaging, but it requires a precise and often complex velocity model. In such situations, 3D Kirchhoff prestack depth migration can be quite expensive. On the other hand, a wavefield approach, although generally tremendously expensive, is not affected by the complexity of the velocity model. We propose an affordable 3-D wavefield prestack depth-migration technique. It is designed for marine surveys for which the source-receiver azimuth is approximately constant. The technique applies a plane-wave migration algorithm to time-shifted data — quite a surprising approach when we realize that marine surveys do not allow the synthesis of genuine plane-wave data. Additionally, the imaging principle has to be modified to give results consistent with shot-record migration. Our technique also produces image gathers that allow an update of the velocity model by means of migration velocity analysis. Results from synthetics and conventional marine data demonstrate the effectiveness of the method.


Geophysics ◽  
1997 ◽  
Vol 62 (4) ◽  
pp. 1226-1237 ◽  
Author(s):  
Irina Apostoiu‐Marin ◽  
Andreas Ehinger

Prestack depth migration can be used in the velocity model estimation process if one succeeds in interpreting depth events obtained with erroneous velocity models. The interpretational difficulty arises from the fact that migration with erroneous velocity does not yield the geologically correct reflector geometries and that individual migrated images suffer from poor signal‐to‐noise ratio. Moreover, migrated events may be of considerable complexity and thus hard to identify. In this paper, we examine the influence of wrong velocity models on the output of prestack depth migration in the case of straight reflector and point diffractor data in homogeneous media. To avoid obscuring migration results by artifacts (“smiles”), we use a geometrical technique for modeling and migration yielding a point‐to‐point map from time‐domain data to depth‐domain data. We discover that strong deformation of migrated events may occur even in situations of simple structures and small velocity errors. From a kinematical point of view, we compare the results of common‐shot and common‐offset migration. and we find that common‐offset migration with erroneous velocity models yields less severe image distortion than common‐shot migration. However, for any kind of migration, it is important to use the entire cube of migrated data to consistently interpret in the prestack depth‐migrated domain.


Sign in / Sign up

Export Citation Format

Share Document