Inversion of airborne electromagnetic data for magnetic permeability

Author(s):  
Les P. Beard ◽  
Jonathan E. Nyquist
Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. E153-E162 ◽  
Author(s):  
James Macnae ◽  
Tim Munday ◽  
Camilla Soerensen

All available inversion software for airborne electromagnetic (AEM) data can at a minimum fit a nondispersive conductivity model to the observed inductive secondary field responses, whether operating in the time or frequency domain. Quasistatic inductive responses are essentially controlled by the induction number, the product of frequency with conductivity and magnetic permeability. Recent research has permitted the conductivity model to be dispersive, commonly using a single Cole-Cole parameterization of the induced polarization (IP) effect; but this parameterization slows down and destabilizes any inversion, and it does not account for the need for dual or multiple Cole-Cole responses. Little has been published on inverting AEM data affected by frequency-dependent magnetic permeability, or superparamagnetism (SPM), usually characterized by a Chikazumi model. Because the IP and SPM effects are small and are usually only obvious at late delay times, the aim of our research is to determine if these IP and SPM effects can be fitted and stripped from the AEM data after being approximated with simple dispersive models. We are able to successfully automate a thin-sheet model to do this stripping. Stripped data then can be inverted using a nondispersive conductivity model. The IP and SPM parameters fitted independently to each independent measured decay to provide stripping are proven to be spatially coherent, and they are geologically sensible. The results are found to enhance interpretation of the regolith geology, particularly the nature and distribution of transported materials that are not afforded by mapping conductivity/conductance alone.


Geophysics ◽  
2003 ◽  
Vol 68 (4) ◽  
pp. 1211-1223 ◽  
Author(s):  
Haoping Huang ◽  
Douglas C. Fraser

Inversion of airborne electromagnetic (EM) data for a layered earth has been commonly performed under the assumption that the magnetic permeability of the layers is the same as that of free space. The resistivity inverted from helicopter EM data in this way is not reliable in highly magnetic areas because magnetic polarization currents occur in addition to conduction currents, causing the inverted resistivity to be erroneously high. A new algorithm for inverting for the resistivity, magnetic permeability, and thickness of a layered model has been developed for a magnetic conductive layered earth. It is based on traditional inversion methodologies for solving nonlinear inverse problems and minimizes an objective function subject to fitting the data in a least‐squares sense. Studies using synthetic helicopter EM data indicate that the inversion technique is reasonably dependable and provides fast convergence. When six synthetic in‐phase and quadrature data from three frequencies are used, the model parameters for two‐ and three‐layer models are estimated to within a few percent of their true values after several iterations. The analysis of partial derivatives with respect to the model parameters contributes to a better understanding of the relative importance of the model parameters and the reliability of their determination. The inversion algorithm is tested on field data obtained with a Dighem helicopter EM system at Mt. Milligan, British Columbia, Canada. The output magnetic susceptibility‐depth section compares favorably with that of Zhang and Oldenburg who inverted for the susceptibility on the assumption that the resistivity distribution was known.


Geophysics ◽  
2015 ◽  
Vol 80 (6) ◽  
pp. K25-K36 ◽  
Author(s):  
Michael S. McMillan ◽  
Christoph Schwarzbach ◽  
Eldad Haber ◽  
Douglas W. Oldenburg

Geophysics ◽  
2002 ◽  
Vol 67 (2) ◽  
pp. 492-500 ◽  
Author(s):  
James E. Reid ◽  
James C. Macnae

When a confined conductive target embedded in a conductive host is energized by an electromagnetic (EM) source, current flow in the target comes from both direct induction of vortex currents and current channeling. At the resistive limit, a modified magnetometric resistivity integral equation method can be used to rapidly model the current channeling component of the response of a thin-plate target energized by an airborne EM transmitter. For towed-bird transmitter–receiver geometries, the airborne EM anomalies of near-surface, weakly conductive features of large strike extent may be almost entirely attributable to current channeling. However, many targets in contact with a conductive host respond both inductively and galvanically to an airborne EM system. In such cases, the total resistive-limit response of the target is complicated and is not the superposition of the purely inductive and purely galvanic resistive-limit profiles. Numerical model experiments demonstrate that while current channeling increases the width of the resistive-limit airborne EM anomaly of a wide horizontal plate target, it does not necessarily increase the peak anomaly amplitude.


Sign in / Sign up

Export Citation Format

Share Document