Compressional (P-wave) and Shear (SH-wave) reflection seismic case history over the Bane Dome, Giles County, Virginia

Author(s):  
Mark J. Gresko ◽  
John K. Costain
2014 ◽  
Vol 6 (2) ◽  
pp. 2169-2213
Author(s):  
T. Burschil ◽  
T. Beilecke ◽  
C. M. Krawczyk

Abstract. High-resolution reflection seismic methods are an established non-destructive tool for engineering tasks. In the near surface, shear wave reflection seismic measurements usually offer a higher spatial resolution in the same effective signal frequency spectrum than P wave data, but data quality varies more strongly. To discuss the causes of these differences, we investigated a P wave and a SH wave reflection seismic profile measured at the same location on Föhr island, and applied reflection seismic processing to the field data as well as finite difference modelling of the seismic wavefield (SOFI FD-code). The simulations calculated were adapted to the acquisition field geometry, comprising 2 m receiver distance and 4 m shot distance along the 1.5 km long P wave and 800 m long SH wave profiles. A Ricker-Wavelet and the use of absorbing frames were first order model parameters. The petrophysical parameters to populate the structural models down to 400 m depth are taken from borehole data, VSP measurements and cross-plot relations. The first simulation of the P wave wavefield was based on a simplified hydrogeological model of the survey location containing six lithostratigraphic units. Single shot data were compared and seismic sections created. Major features like direct wave, refracted waves and reflections are imaged, but the reflectors describing a prominent till layer at ca. 80 m depth was missing. Therefore, the P wave input model was refined and 16 units assigned. These define a laterally more variable velocity model (vP = 1600–2300 m s−1) leading to a much better reproduction of the field data. The SH wave model was adapted accordingly but only led to minor correlation with the field data and produced a higher signal-to-noise ratio. Therefore, we suggest to consider for future simulations additional features like intrinsic damping, thin layering, or a near surface weathering layer. These may lead to a better understanding of key parameters determining the data quality of near-surface seismic measurements.


Solid Earth ◽  
2015 ◽  
Vol 6 (1) ◽  
pp. 33-47 ◽  
Author(s):  
T. Burschil ◽  
T. Beilecke ◽  
C. M. Krawczyk

Abstract. High-resolution reflection seismic methods are an established non-destructive tool for engineering tasks. In the near surface, shear-wave reflection seismic measurements usually offer a higher spatial resolution in the same effective signal frequency spectrum than P-wave data, but data quality varies more strongly. To discuss the causes of these differences, we investigated a P-wave and a SH-wave seismic reflection profile measured at the same location on the island of Föhr, Germany and applied seismic reflection processing to the field data as well as finite-difference modelling of the seismic wave field. The simulations calculated were adapted to the acquisition field geometry, comprising 2 m receiver distance (1 m for SH wave) and 4 m shot distance along the 1.5 km long P-wave and 800 m long SH-wave profiles. A Ricker wavelet and the use of absorbing frames were first-order model parameters. The petrophysical parameters to populate the structural models down to 400 m depth were taken from borehole data, VSP (vertical seismic profile) measurements and cross-plot relations. The simulation of the P-wave wave-field was based on interpretation of the P-wave depth section that included a priori information from boreholes and airborne electromagnetics. Velocities for 14 layers in the model were derived from the analysis of five nearby VSPs (vP =1600–2300 m s-1). Synthetic shot data were compared with the field data and seismic sections were created. Major features like direct wave and reflections are imaged. We reproduce the mayor reflectors in the depth section of the field data, e.g. a prominent till layer and several deep reflectors. The SH-wave model was adapted accordingly but only led to minor correlation with the field data and produced a higher signal-to-noise ratio. Therefore, we suggest to consider for future simulations additional features like intrinsic damping, thin layering, or a near-surface weathering layer. These may lead to a better understanding of key parameters determining the data quality of near-surface shear-wave seismic measurements.


2014 ◽  
Vol 55 (67) ◽  
pp. 97-106 ◽  
Author(s):  
Anja Diez ◽  
Olaf Eisen ◽  
Ilka Weikusat ◽  
Jan Eichler ◽  
Coen Hofstede ◽  
...  

AbstractIn 2010 a reflection seismic survey was carried out on the Alpine glacier Colle Gnifetti. The processed and depth-converted data could be compared to a nearby ice core, drilled almost to the bed. Comparisons showed that the depth of the P-wave bed reflection was too shallow, while the depth of the SH-wave bed reflection fitted the ice-core length well. We are now able to explain the major part of these differences using the existing crystal orientations of the ice at Colle Gnifetti. We calculate anisotropic velocities for P- and SH-waves that are usually picked for stacking and compare them with zero-offset velocities needed for the depth conversion. Here we take the firn pack at Colle Gnifetti into account for P- and S-wave analysis. To incorporate the S-wave analysis we first derive a new equation for the relationship between density and S-wave velocity from diving waves. We show that anisotropic fabrics observed at Colle Gnifetti introduce a difference of only 1% between stacking and depth-conversion velocities for the SH-wave, but 7% for the P-wave. We suggest that this difference in stacking and depth-conversion velocity for the P-wave can be used to derive information about the existing anisotropy by combining our seismic data with, for example, radar data.


Sign in / Sign up

Export Citation Format

Share Document