AVA simultaneous inversion of partially stacked seismic amplitude data for the spatial delineation of lithology and fluid units of deepwater hydrocarbon reservoirs in the central Gulf of Mexico

Geophysics ◽  
2006 ◽  
Vol 71 (4) ◽  
pp. E41-E48 ◽  
Author(s):  
Arturo Contreras ◽  
Carlos Torres-Verdín ◽  
Tim Fasnacht

This paper describes the successful application of amplitude-versus-angle (AVA) inversion of prestack-seismic amplitude data to detect and delineate deepwater hydrocarbon reservoirs in the central Gulf of Mexico. Detailed AVA fluid/lithology sensitivity analysis was conducted to assess the nature of AVA effects in the study area based on well-log data. Standard techniques such as crossplot analysis, Biot-Gassmann fluid substitution, AVA reflectivity modeling, and numerical simulation of synthetic gathers were part of the AVA sensitivity analysis. Crossplot and Biot-Gassmann analyses indicate significant sensitivity of acoustic properties to fluid substitution. AVA reflectivity and angle-gather modeling indicate that the shale/sand interfaces represented by the top and base of the M-10 reservoir are associated with typical Class III AVA responses caused by relatively low-impedance gas-bearing sands. Consequently, prestack seismic inversion provided accurate and reliable quantitative information about the spatial distribution of lithology and fluid units within the turbidite reservoirs based on the interpretation of fluid/lithology-sensitive modulus attributes. From the integration of inversion results with analogous depositional models, the M-series reservoirs were interpreted as stacked terminal turbidite lobes within an overall fan complex. This interpretation is consistent with previous regional stratigraphic/depositional studies.

Geophysics ◽  
2007 ◽  
Vol 72 (1) ◽  
pp. C19-C29 ◽  
Author(s):  
Arturo Contreras ◽  
Carlos Torres-Verdín ◽  
Tim Fasnacht

We consider the inversion of synthetic and recorded seismic amplitude variation with angle AVA data to appraise the influence of several data-related factors that control the vertical resolution and accuracy of the estimated spatial distributions of elastic properties. We use measurements acquired in deepwater hydrocarbon reservoirs in the central Gulf of Mexico to generate synthetic seismic amplitude data and evaluate inversion results with both synthetic and recorded seismic amplitudes. Detailed sensitivity analysis of synthetic amplitude data indicates that, even in the most ideal scenario (perfectly migrated data, isotropic media, noise-free seismic amplitude data, sufficient far-angle coverage, and accurate estimates of angle-dependent wavelets and low-frequency components), input elastic models are not reconstructedaccurately by the inversion of synthetic seismic amplitudes. We attribute this result to the relatively low vertical resolution of the seismic amplitude data. P-wave impedance is the most accurate of the inverted properties, followed by S-impedance and bulk density. Additionally, sufficient far-angle coverage is crucial for the accurate estimation of 1D distributions of S-impedance and bulk density. We show that time alignment of partial-angle stacks for correcting residual NMO effects improves the vertical resolution of the estimated spatial distributions of elastic parameters and consistently decreases the data misfit. Finally, we found that the accuracy of the inverted distributions of elastic parameters is improved substantially by (1) increasing the preserved AVA information via multiple single-angle stacks, (2) correcting the P-wave velocity field used for calculating angles in partial-angle stacking, and (3) excluding far-angle data with low signal-to-noise ratios.


2014 ◽  
Vol 33 (5) ◽  
pp. 520-525 ◽  
Author(s):  
Arturo Contreras ◽  
Carlos Torres-Verdín ◽  
Timothy Fasnacht ◽  
William Chesters ◽  
Knut Kvien

Geophysics ◽  
2011 ◽  
Vol 76 (4) ◽  
pp. B139-B150 ◽  
Author(s):  
Zijian Zhang ◽  
De-hua Han ◽  
Qiuliang Yao

Gas hydrate can be interpreted from seismic data through observation of bottom simulating reflector (BSR). It is a challenge to interpret gas hydrate without BSR. Three-dimensional qualitative and quantitative seismic interpretations were used to characterize gas hydrate distribution and concentration in the eastern Green Canyon area of the Gulf of Mexico, where BSR is absent. The combination of qualitative and quantitative interpretation reduces ambiguities in the estimation and identification of gas hydrate. Sandy deposition and faults are qualitatively interpreted from amplitude data. The 3D acoustic impedance volume was interpreted in terms of high P-impedance hydrate zones and low P-impedance free gas zones. Gas hydrate saturation derived from P-impedance is estimated by a rock physics transform. We interpreted gas hydrate in the sand-prone sediments with a maximum saturation of approximately 50% of the pore space. Sheet-like and some bright spot gas hydrate accumulations are interpreted. The interpretation of sheet-like gas hydrate within sand-prone sediments around faults suggests that fluid moves into the sand zones laterally by conduits. Variations in depths of interpreted gas hydrate zones imply nonequilibrium conditions. Low P-impedance free gas zones within high P-impedance gas hydrate zones imply possible coexistence of hydrate and free gas within the hydrate stability zone. We propose that gas hydrate distribution and concentration are associated with structures, buried sedimentary bodies, sources of gas, and fluid flux.


Sign in / Sign up

Export Citation Format

Share Document