Accurate Detection and Spatial Delineation of Thin-Sand Sedimentary Sequences via Joint Stochastic Inversion of Well Logs and 3D Pre-Stack Seismic Amplitude Data

Author(s):  
German Diego Merletti ◽  
Carlos Torres-Verdin
2009 ◽  
Vol 13 (02) ◽  
pp. 246-264 ◽  
Author(s):  
Germán D. Merletti ◽  
Carlos Torres-Verdín

Summary We describe the successful application of a new prestack stochastic inversion algorithm to the spatial delineation of thin reservoir units otherwise poorly defined with deterministic inversion procedures. The inversion algorithm effectively combines the high vertical resolution of wireline logs with the relatively dense horizontal coverage of 3D prestack seismic amplitude data. Multiple partial-angle stacks of seismic amplitude data provide the degrees of freedom necessary to estimate spatial distributions of lithotype and compressional-wave (P-wave) and shear-wave (S-wave) velocities in a high-resolution stratigraphic/sedimentary grid. In turn, the estimated volumes of P- and S-wave velocity permit the statistical cosimulation of lithotype-dependent spatial distributions of porosity and permeability. The new stochastic inversion algorithm maximizes a Bayesian selection criterion to populate values of lithotype and P- and S-wave velocities in the 3D simulation grid between wells. Property values are accepted by the Bayesian selection criterion only when they increase the statistical correlation between the simulated and recorded seismic amplitudes of all partial-angle stacks. Furthermore, inversion results are conditioned by the predefined measures of spatial correlation (variograms) of the unknown properties, their statistical cross correlation, and the assumed global lithotype proportions. Using field data acquired in a fluvial-deltaic sedimentary-rock sequence, we show that deterministic prestack seismic-inversion techniques fail to delineate thin reservoir units (10-15 m) penetrated by wells because of insufficient vertical resolution and low contrast of elastic properties. By comparison, the new stochastic inversion yields spatial distributions of lithotype and elastic properties with a vertical resolution between 10-15 m that accurately describe spatial trends of clinoform sedimentary sequences and their associated reservoir units. Blind-well tests and cross validation of inversion results confirm the reliability of the estimated distributions of lithotype and P- and S-wave velocities. Inversion results provide new insight to the spatial and petrophysical character of existing flow units and enable the efficient planning of primary and secondary hydrocarbon recovery operations.


Author(s):  
Rahmat Catur Wibowo ◽  
Ditha Arlinsky Ar ◽  
Suci Ariska ◽  
Muhammad Budisatya Wiranatanagara ◽  
Pradityo Riyadi

This study has been done to map the distribution of gas saturated sandstone reservoir by using stochastic seismic inversion in the “X” field, Bonaparte basin. Bayesian stochastic inversion seismic method is an inversion method that utilizes the principle of geostatistics so that later it will get a better subsurface picture with high resolution. The stages in conducting this stochastic inversion technique are as follows, (i) sensitivity analysis, (ii) well to seismic tie, (iii) picking horizon, (iv) picking fault, (v) fault modeling, (vi) pillar gridding, ( vii) making time structure maps, (viii) scale up well logs, (ix) trend modeling, (x) variogram analysis, (xi) stochastic seismic inversion (SSI). In the process of well to seismic tie, statistical wavelets are used because they can produce good correlation values. Then, the stochastic seismic inversion results show that the reservoir in the study area is a reservoir with tight sandstone lithology which has a low porosity value and a value of High acoustic impedance ranging from 30,000 to 40,000 ft /s*g/cc.


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. R135-R146
Author(s):  
Huaizhen Chen ◽  
Tiansheng Chen ◽  
Kristopher A. Innanen

Tilted transverse isotropy (TTI) provides a useful model for the elastic response of a medium containing aligned fractures with a symmetry axis oriented obliquely in the vertical and horizontal coordinate directions. Robust methods for determining the TTI properties of a medium from seismic observations to characterize fractures are sought. Azimuthal differencing of seismic amplitude data produces quantities that are particularly sensitive to TTI properties. Based on the linear slip fracture model, we express the TTI stiffness matrix in terms of the normal and tangential fracture weaknesses. Perturbing stiffness parameters to simulate an interface separating an isotropic medium and a TTI medium, we derive a linearized P-to-P reflection coefficient expression in which the influence of tilt angle and fracture weaknesses separately emerge. We formulate a Bayesian inversion approach in which amplitude differences between seismic data along two azimuths, interpreted in terms of the reflection coefficient approximation, are used to determine fracture weaknesses and tilt angle. Tests with simulated data confirm that the unknown parameter vector involving fracture weakness and tilted fracture weaknesses is stably estimated from seismic data containing a moderate degree of additive Gaussian noise. The inversion approach is applied to a field surface seismic data acquired over a fractured reservoir; from it, interpretable tilted fracture weaknesses, consistent with expected reservoir geology, are obtained. We determine that our inversion approach and the established inversion workflow can produce the properties of systems of tilted fractures stably using azimuthal seismic amplitude differences, which may add important information for characterization of fractured reservoirs.


Sign in / Sign up

Export Citation Format

Share Document