scholarly journals Shot-gather time migration of planar reflectors without velocity model

Geophysics ◽  
2011 ◽  
Vol 76 (2) ◽  
pp. S93-S101 ◽  
Author(s):  
Andrej Bóna

Standard migration techniques require a velocity model. A new and fast prestack time migration method is presented that does not require a velocity model as an input. The only input is a shot gather, unlike other velocity-independent migrations that also require input of data in other gathers. The output of the presented migration is a time-migrated image and the migration velocity model. The method uses the first and second derivatives of the traveltimes with respect to the location of the receiver. These attributes are estimated by computing the gradient of the amplitude in a shot gather. The assumptions of the approach are a laterally slowly changing velocity and reflectors with small curvatures; the dip of the reflector can be arbitrary. The migration velocity corresponds to the root mean square (rms) velocity for laterally homogeneous media for near offsets. The migration expressions for 2D and 3D cases are derived from a simple geometrical construction considering the image of the source. The strengths and weaknesses of the methods are demonstrated on synthetic data. At last, the applicability of the method is discussed by interpreting the migration velocity in terms of the Taylor expansion of the traveltime around the zero offset.

Geophysics ◽  
1983 ◽  
Vol 48 (11) ◽  
pp. 1514-1524 ◽  
Author(s):  
Edip Baysal ◽  
Dan D. Kosloff ◽  
John W. C. Sherwood

Migration of stacked or zero‐offset sections is based on deriving the wave amplitude in space from wave field observations at the surface. Conventionally this calculation has been carried out through a depth extrapolation. We examine the alternative of carrying out the migration through a reverse time extrapolation. This approach may offer improvements over existing migration methods, especially in cases of steeply dipping structures with strong velocity contrasts. This migration method is tested using appropriate synthetic data sets.


Geophysics ◽  
1995 ◽  
Vol 60 (4) ◽  
pp. 1118-1127 ◽  
Author(s):  
Dimitri Bevc ◽  
James L. Black ◽  
Gopal Palacharla

We analyze how time migration mispositions events in the presence of lateral velocity variation by examining the impulse response of depth modeling followed by time migration. By examining this impulse response, we lay the groundwork for the development of a remedial migration operator that links time and depth migration. A simple theory by Black and Brzostowski predicted that the response of zero‐offset time migration to a point diffractor in a v(x, z) medium would be a distinctive, cusp‐shaped curve called a plume. We have constructed these plumes by migrating synthetic data using several time‐migration methods. We have also computed the shape of the plumes by two geometrical construction methods. These two geometrical methods compare well and explain the observed migration results. The plume response is strongly influenced by migration velocity. We have studied this dependency by migrating synthetic data with different velocities. The observed velocity dependence is confirmed by geometrical construction. A simple first‐order theory qualitatively explains the behavior of zero‐offset time migration, but a more complete understanding of migration velocity dependence in a v(x, z) medium requires a higher order finite‐offset theory.


Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCA65-WCA73 ◽  
Author(s):  
Dennis Cooke ◽  
Andrej Bóna ◽  
Benn Hansen

Starting with the double-square-root equation we derive expressions for a velocity-independent prestack time migration and for the associated migration velocity. We then use that velocity to identify multiples and suppress them as part of the imaging step. To describe our algorithm, workflow, and products, we use the terms velocity-independent and oriented. While velocity-independent imaging does not require an input migration velocity, it does require input [Formula: see text]-values (also called local event slopes) measured in both the shot and receiver domains. There are many possible methods of calculating these required input [Formula: see text]-values, perhaps the simplest is to compute the ratio of instantaneous spatial frequency to instantaneous temporal frequency. Using a synthetic data set rich in multiples, we test the oriented algorithm and generate migrated prestack gathers, the oriented migration velocity field, and stacked migrations. We use oriented migration velocities for prestack multiple suppression. Without this multiple suppression step, the velocity-independent migration is inferior to a conventional Kirchhoff migration because the oriented migration will flatten primaries and multiples alike in the common image domain. With this multiple suppression step, the velocity-independent are very similar to a Kirchhoff migration generated using the known migration velocity of this test data set.


Geophysics ◽  
2006 ◽  
Vol 71 (4) ◽  
pp. SI197-SI207 ◽  
Author(s):  
Xiang Xiao ◽  
Min Zhou ◽  
Gerard T. Schuster

We describe how vertical seismic profile (VSP) interferometric imaging of transmitted P-to-S (PS) waves can be used to delineate the flanks of salt bodies. Unlike traditional migration methods, interferometric PS imaging does not require the migration velocity model of the salt and/or upper sediments in order to image the salt flank. Synthetic elastic examples show that PS interferometric imaging can clearly delineate the upper and lower boundaries of a realistic salt-body model. Results also show that PS interferometric imaging is noticeably more accurate than conventional migration methods in the presence of static shifts and/or migration velocity errors. However, the illumination area of the PS transmitted waves is limited by the width of the shot and geophone aperture, which means wide shot offsets and deeper receiver wells are needed for comprehensive salt-flank imaging. Interferometric imaging results for VSP data from the Gulf of Mexico demonstrate its superiority over the traditional migration method. We also discuss other arrivals that can be used for interferometric imaging of salt flanks. For comparison, reduced-time migration results are presented, which are similar in quality to those obtained for interferometric imaging. We conclude that PS interferometric imaging of VSP data provides the geophysicist with a new tool by which salt flanks can be viewed from both above and below VSP geophone locations.


Geophysics ◽  
2003 ◽  
Vol 68 (5) ◽  
pp. 1650-1661 ◽  
Author(s):  
Sergey Fomel

Velocity continuation is an imaginary continuous process of seismic image transformation in the postmigration domain. It generalizes the concepts of residual and cascaded migrations. Understanding the laws of velocity continuation is crucially important for a successful application of time‐migration velocity analysis. These laws predict the changes in the geometry and intensity of reflection events on migrated images with the change of the migration velocity. In this paper, I derive kinematic and dynamic laws for the case of prestack residual migration from simple geometric principles. The main theoretical result is a decomposition of prestack velocity continuation into three different components corresponding to residual normal moveout, residual dip moveout, and residual zero‐offset migration. I analyze the contribution and properties of each of the three components separately. This theory forms the basis for constructing efficient finite‐difference and spectral algorithms for time‐migration velocity analysis.


Geophysics ◽  
1991 ◽  
Vol 56 (3) ◽  
pp. 365-370 ◽  
Author(s):  
Y. C. Kim ◽  
R. Gonzalez

To obtain accurate migration velocities, we must estimate the velocity at migrated depth points. Wavefront focusing analysis with downward continuation yields the rms velocity at migrated depth points; however, the large amount of computation required for downward continuation limits use of this approach for routine processing. The purpose of this paper is to present an implementation of the Kirchhoff integral which makes the wavefront focusing analysis practical for time‐migration velocity analysis. Downward continuation focuses the wavefront to the zero offset at the depth controlled by the velocity used for the continuation. The migration velocity is then determined from the depth where the focused wavefront attains the maximum amplitude. The flexibility of the Kirchhoff integral allows us to compute only the zero‐offset trace at each depth point and lets us avoid most of the computation for the downward continuation of unstacked data. Furthermore, since the velocity is obtained from the location where the focused wavefront shows the maximum amplitude, prestack time migration with the velocity from this technique produces the maximum amplitude for the subsurface reflector.


Geophysics ◽  
2014 ◽  
Vol 79 (6) ◽  
pp. S263-S270 ◽  
Author(s):  
Yibo Wang ◽  
Yikang Zheng ◽  
Lele Zhang ◽  
Xu Chang ◽  
Zhenxing Yao

Free-surface-related multiples are usually regarded as noise in conventional seismic processing. However, they can provide extra illumination of the subsurface and thus have been used in migration procedures, e.g., in one- and two-way wave-equation migrations. The disadvantage of the migration of multiples is the migration artifacts generated by the crosscorrelation of different seismic events, e.g., primaries and second-order free-surface-related multiples, so the effective elimination of migration artifacts is crucial for migration of multiples. The angle domain common image gather (ADCIG) is a suitable domain for testing the correctness of a migration velocity model. When the migration velocity model is correct, all the events in ADCIGs should be flat, and this provides a criterion for removing the migration artifacts. Our approach first obtains ADCIGs during reverse time migration and then applies a high-resolution parabolic Radon transform to all ADCIGs. By doing so, most migration artifacts will reside in the nonzero curvature regions in the Radon domain, and then a muting procedure can be implemented to remove the data components outside the vicinity of zero curvature. After the application of an adjoint Radon transform, the filtered ADCIGs are obtained and the final denoised migration result is generated by stacking all filtered ADCIGs. A three-flat-layer velocity model and the Marmousi synthetic data set are used for numerical experiments. The numerical results revealed that the proposed approach can eliminate most artifacts generated by migration of multiples when the migration velocity model is correct.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. U1-U11 ◽  
Author(s):  
Chunhui Dong ◽  
Shangxu Wang ◽  
Jianfeng Zhang ◽  
Jingsheng Ma ◽  
Hao Zhang

Migration velocity analysis is a labor-intensive part of the iterative prestack time migration (PSTM) process. We have developed a velocity estimation scheme to improve the efficiency of the velocity analysis process using an automatic approach. Our scheme is the numerical implementation of the conventional velocity analysis process based on residual moveout analysis. The key aspect of this scheme is the automatic event picking in the common-reflection point (CRP) gathers, which is implemented by semblance scanning trace by trace. With the picked traveltime curves, we estimate the velocities at discrete grids in the velocity model using the least-squares method, and build the final root-mean-square (rms) velocity model by spatial interpolation. The main advantage of our method is that it can generate an appropriate rms velocity model for PSTM in just a few iterations without manual manipulations. In addition, using the fitting curves of the picked events in a range of offsets to estimate the velocity model, which is fitting to a normal moveout correction, can prevent our scheme from the local minima issue. The Sigsbee2B model and a field data set are used to verify the feasibility of our scheme. High-quality velocity model and imaging results are obtained. Compared with the computational cost to generate the CRP gathers, the cost of our scheme can be neglected, and the quality of the initial velocity is not critical.


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. S239-S249
Author(s):  
Shihang Feng ◽  
Oz Yilmaz ◽  
Yuqing Chen ◽  
Gerard T. Schuster

The conventional common-midpoint stack is not equivalent to the zero-offset section due to the existence of velocity uncertainty. To obtain a zero-offset reflection section that preserves most reflections and diffractions, we have developed a velocity-independent workflow for reconstructing a high-quality zero-offset reflection section from prestack data with a deblurring filter. This workflow constructs a migration image volume by prestack time migration using a series of constant-velocity models. A deblurring filter for each constant-velocity model is applied to each time-migration image to get a deblurred image volume. To preserve all events in the image volume, each deblurred image panel is demigrated and then summed over the velocity axis. Compared with the workflow without a deblurring filter, the composite zero-offset reflection section has higher resolution and fewer migration artifacts. We evaluate applications of our method to synthetic and field data to validate its effectiveness.


Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. S47-S55 ◽  
Author(s):  
Parsa Bakhtiari Rad ◽  
Benjamin Schwarz ◽  
Dirk Gajewski ◽  
Claudia Vanelle

Diffraction imaging can lead to high-resolution characterization of small-scale subsurface structures. A key step of diffraction imaging and tomography is diffraction separation and enhancement, especially in the full prestack data volume. We have considered point diffractors and developed a robust and fully data-driven workflow for prestack diffraction separation based on wavefront attributes, which are determined using the common-reflection-surface (CRS) method. In the first of two steps, we apply a zero-offset-based extrapolation operator for prestack diffraction separation, which combines the robustness and stability of the zero-offset CRS processing with enhanced resolution and improved illumination of the finite-offset CRS processing. In the second step, when the finite-offset diffracted events are separated, we apply a diffraction-based time migration velocity model building that provides high-quality diffraction velocity spectra. Applications of the new workflow to 2D/3D complex synthetic data confirm the superiority of prestack diffraction separation over the poststack method as well as the high potential of diffractions for improved time imaging.


Sign in / Sign up

Export Citation Format

Share Document