Automatic migration velocity estimation for prestack time migration

Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. U1-U11 ◽  
Author(s):  
Chunhui Dong ◽  
Shangxu Wang ◽  
Jianfeng Zhang ◽  
Jingsheng Ma ◽  
Hao Zhang

Migration velocity analysis is a labor-intensive part of the iterative prestack time migration (PSTM) process. We have developed a velocity estimation scheme to improve the efficiency of the velocity analysis process using an automatic approach. Our scheme is the numerical implementation of the conventional velocity analysis process based on residual moveout analysis. The key aspect of this scheme is the automatic event picking in the common-reflection point (CRP) gathers, which is implemented by semblance scanning trace by trace. With the picked traveltime curves, we estimate the velocities at discrete grids in the velocity model using the least-squares method, and build the final root-mean-square (rms) velocity model by spatial interpolation. The main advantage of our method is that it can generate an appropriate rms velocity model for PSTM in just a few iterations without manual manipulations. In addition, using the fitting curves of the picked events in a range of offsets to estimate the velocity model, which is fitting to a normal moveout correction, can prevent our scheme from the local minima issue. The Sigsbee2B model and a field data set are used to verify the feasibility of our scheme. High-quality velocity model and imaging results are obtained. Compared with the computational cost to generate the CRP gathers, the cost of our scheme can be neglected, and the quality of the initial velocity is not critical.

Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCA65-WCA73 ◽  
Author(s):  
Dennis Cooke ◽  
Andrej Bóna ◽  
Benn Hansen

Starting with the double-square-root equation we derive expressions for a velocity-independent prestack time migration and for the associated migration velocity. We then use that velocity to identify multiples and suppress them as part of the imaging step. To describe our algorithm, workflow, and products, we use the terms velocity-independent and oriented. While velocity-independent imaging does not require an input migration velocity, it does require input [Formula: see text]-values (also called local event slopes) measured in both the shot and receiver domains. There are many possible methods of calculating these required input [Formula: see text]-values, perhaps the simplest is to compute the ratio of instantaneous spatial frequency to instantaneous temporal frequency. Using a synthetic data set rich in multiples, we test the oriented algorithm and generate migrated prestack gathers, the oriented migration velocity field, and stacked migrations. We use oriented migration velocities for prestack multiple suppression. Without this multiple suppression step, the velocity-independent migration is inferior to a conventional Kirchhoff migration because the oriented migration will flatten primaries and multiples alike in the common image domain. With this multiple suppression step, the velocity-independent are very similar to a Kirchhoff migration generated using the known migration velocity of this test data set.


Geophysics ◽  
2013 ◽  
Vol 78 (1) ◽  
pp. U19-U29 ◽  
Author(s):  
Yaxun Tang ◽  
Biondo Biondi

We apply target-oriented wave-equation migration velocity analysis to a 3D field data set acquired from the Gulf of Mexico. Instead of using the original surface-recorded data set, we use a new data set synthesized specifically for velocity analysis to update subsalt velocities. The new data set is generated based on an initial unfocused target image and by a novel application of 3D generalized Born wavefield modeling, which correctly preserves velocity kinematics by modeling zero and nonzero subsurface-offset-domain images. The target-oriented inversion strategy drastically reduces the data size and the computation domain for 3D wave-equation migration velocity analysis, greatly improving its efficiency and flexibility. We apply differential semblance optimization (DSO) using the synthesized new data set to optimize subsalt velocities. The updated velocity model significantly improves the continuity of subsalt reflectors and yields flattened angle-domain common-image gathers.


Geophysics ◽  
2008 ◽  
Vol 73 (3) ◽  
pp. S99-S114 ◽  
Author(s):  
Einar Iversen ◽  
Martin Tygel

Seismic time migration is known for its ability to generate well-focused and interpretable images, based on a velocity field specified in the time domain. A fundamental requirement of this time-migration velocity field is that lateral variations are small. In the case of 3D time migration for symmetric elementary waves (e.g., primary PP reflections/diffractions, for which the incident and departing elementary waves at the reflection/diffraction point are pressure [P] waves), the time-migration velocity is a function depending on four variables: three coordinates specifying a trace point location in the time-migration domain and one angle, the so-called migration azimuth. Based on a time-migration velocity field available for a single azimuth, we have developed a method providing an image-ray transformation between the time-migration domain and the depth domain. The transformation is obtained by a process in which image rays and isotropic depth-domain velocity parameters for their propagation are esti-mated simultaneously. The depth-domain velocity field and image-ray transformation generated by the process have useful applications. The estimated velocity field can be used, for example, as an initial macrovelocity model for depth migration and tomographic inversion. The image-ray transformation provides a basis for time-to-depth conversion of a complete time-migrated seismic data set or horizons interpreted in the time-migration domain. This time-to-depth conversion can be performed without the need of an a priori known velocity model in the depth domain. Our approach has similarities as well as differences compared with a recently published method based on knowledge of time-migration velocity fields for at least three migration azimuths. We show that it is sufficient, as a minimum, to give as input a time-migration velocity field for one azimuth only. A practical consequence of this simplified input is that the image-ray transformation and its corresponding depth-domain velocity field can be generated more easily.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. R859-R868
Author(s):  
Mikhail Davydenko ◽  
D. J. Verschuur

Migration velocity analysis is an important method for providing an accurate velocity model for seismic imaging, which is crucial for correct focusing and localization of subsurface information. Conventionally, only primaries are considered as a source of information for both methods. The use of surface multiples in imaging is becoming more common due to the use of inversion-based approaches, which allow us to handle the crosstalk associated with multiples. However, including internal multiples in imaging and velocity estimation is not straightforward using the standard combination of reverse time migration in combination with image-domain velocity tomography. Incorporating internal multiples in imaging and velocity estimation is possible with the joint migration inversion (JMI) methodology, in which internal multiples are explicitly modeled using the estimated reflectivity via a data-domain objective function. However, to correctly match the observed data, the angle-dependent reflectivity and the migration velocity model need to be determined, which provide an over-parameterization of the inversion problem. Therefore, we have extended the JMI methodology to carry out velocity analysis via the extended image domain, in which the angle-dependent reflectivity is updated via data-domain matching. Examples of synthetic and field data with strong internal multiples demonstrate the validity of our method.


Geophysics ◽  
2002 ◽  
Vol 67 (4) ◽  
pp. 1202-1212 ◽  
Author(s):  
Hervé Chauris ◽  
Mark S. Noble ◽  
Gilles Lambaré ◽  
Pascal Podvin

We present a new method based on migration velocity analysis (MVA) to estimate 2‐D velocity models from seismic reflection data with no assumption on reflector geometry or the background velocity field. Classical approaches using picking on common image gathers (CIGs) must consider continuous events over the whole panel. This interpretive step may be difficult—particularly for applications on real data sets. We propose to overcome the limiting factor by considering locally coherent events. A locally coherent event can be defined whenever the imaged reflectivity locally shows lateral coherency at some location in the image cube. In the prestack depth‐migrated volume obtained for an a priori velocity model, locally coherent events are picked automatically, without interpretation, and are characterized by their positions and slopes (tangent to the event). Even a single locally coherent event has information on the unknown velocity model, carried by the value of the slope measured in the CIG. The velocity is estimated by minimizing these slopes. We first introduce the cost function and explain its physical meaning. The theoretical developments lead to two equivalent expressions of the cost function: one formulated in the depth‐migrated domain on locally coherent events in CIGs and the other in the time domain. We thus establish direct links between different methods devoted to velocity estimation: migration velocity analysis using locally coherent events and slope tomography. We finally explain how to compute the gradient of the cost function using paraxial ray tracing to update the velocity model. Our method provides smooth, inverted velocity models consistent with Kirchhoff‐type migration schemes and requires neither the introduction of interfaces nor the interpretation of continuous events. As for most automatic velocity analysis methods, careful preprocessing must be applied to remove coherent noise such as multiples.


Geophysics ◽  
2021 ◽  
pp. 1-50
Author(s):  
German Garabito ◽  
José Silas dos Santos Silva ◽  
Williams Lima

In land seismic data processing, the prestack time migration (PSTM) image remains the standard imaging output, but a reliable migrated image of the subsurface depends on the accuracy of the migration velocity model. We have adopted two new algorithms for time-domain migration velocity analysis based on wavefield attributes of the common-reflection-surface (CRS) stack method. These attributes, extracted from multicoverage data, were successfully applied to build the velocity model in the depth domain through tomographic inversion of the normal-incidence-point (NIP) wave. However, there is no practical and reliable method for determining an accurate and geologically consistent time-migration velocity model from these CRS attributes. We introduce an interactive method to determine the migration velocity model in the time domain based on the application of NIP wave attributes and the CRS stacking operator for diffractions, to generate synthetic diffractions on the reflection events of the zero-offset (ZO) CRS stacked section. In the ZO data with diffractions, the poststack time migration (post-STM) is applied with a set of constant velocities, and the migration velocities are then selected through a focusing analysis of the simulated diffractions. We also introduce an algorithm to automatically calculate the migration velocity model from the CRS attributes picked for the main reflection events in the ZO data. We determine the precision of our diffraction focusing velocity analysis and the automatic velocity calculation algorithms using two synthetic models. We also applied them to real 2D land data with low quality and low fold to estimate the time-domain migration velocity model. The velocity models obtained through our methods were validated by applying them in the Kirchhoff PSTM of real data, in which the velocity model from the diffraction focusing analysis provided significant improvements in the quality of the migrated image compared to the legacy image and to the migrated image obtained using the automatically calculated velocity model.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE161-VE171 ◽  
Author(s):  
J. Schleicher ◽  
J. C. Costa ◽  
A. Novais

Image-wave propagation or velocity continuation describes the variation of the migrated position of a seismic event as a function of migration velocity. Image-wave propagation in the common-image gather (CIG) domain can be combined with residual-moveout analysis for iterative migration velocity analysis (MVA). Velocity continuation of CIGs leads to a detection of those velocities in which events flatten. Although image-wave continuation is based on the assumption of a constant migration velocity, the procedure can be applied in inhomogeneous media. For this purpose, CIGs obtained by migration with an inhomogeneous macrovelocity model are continued starting from a constant reference velocity. The interpretation of continued CIGs, as if they were obtained from residual migrations, leads to a correction formula that translates residual flattening velocities into absolute time-migration velocities. In this way, the migration velocity model can be improved iteratively until a satisfactory result is reached. With a numerical example, we found that MVA with iterative image continuation applied exclusively to selected CIGs can construct a reasonable migration velocity model from scratch, without the need to build an initial model from a previous conventional normal-moveout/dip-moveout velocity analysis.


Geophysics ◽  
2011 ◽  
Vol 76 (2) ◽  
pp. S93-S101 ◽  
Author(s):  
Andrej Bóna

Standard migration techniques require a velocity model. A new and fast prestack time migration method is presented that does not require a velocity model as an input. The only input is a shot gather, unlike other velocity-independent migrations that also require input of data in other gathers. The output of the presented migration is a time-migrated image and the migration velocity model. The method uses the first and second derivatives of the traveltimes with respect to the location of the receiver. These attributes are estimated by computing the gradient of the amplitude in a shot gather. The assumptions of the approach are a laterally slowly changing velocity and reflectors with small curvatures; the dip of the reflector can be arbitrary. The migration velocity corresponds to the root mean square (rms) velocity for laterally homogeneous media for near offsets. The migration expressions for 2D and 3D cases are derived from a simple geometrical construction considering the image of the source. The strengths and weaknesses of the methods are demonstrated on synthetic data. At last, the applicability of the method is discussed by interpreting the migration velocity in terms of the Taylor expansion of the traveltime around the zero offset.


Geophysics ◽  
2006 ◽  
Vol 71 (4) ◽  
pp. SI197-SI207 ◽  
Author(s):  
Xiang Xiao ◽  
Min Zhou ◽  
Gerard T. Schuster

We describe how vertical seismic profile (VSP) interferometric imaging of transmitted P-to-S (PS) waves can be used to delineate the flanks of salt bodies. Unlike traditional migration methods, interferometric PS imaging does not require the migration velocity model of the salt and/or upper sediments in order to image the salt flank. Synthetic elastic examples show that PS interferometric imaging can clearly delineate the upper and lower boundaries of a realistic salt-body model. Results also show that PS interferometric imaging is noticeably more accurate than conventional migration methods in the presence of static shifts and/or migration velocity errors. However, the illumination area of the PS transmitted waves is limited by the width of the shot and geophone aperture, which means wide shot offsets and deeper receiver wells are needed for comprehensive salt-flank imaging. Interferometric imaging results for VSP data from the Gulf of Mexico demonstrate its superiority over the traditional migration method. We also discuss other arrivals that can be used for interferometric imaging of salt flanks. For comparison, reduced-time migration results are presented, which are similar in quality to those obtained for interferometric imaging. We conclude that PS interferometric imaging of VSP data provides the geophysicist with a new tool by which salt flanks can be viewed from both above and below VSP geophone locations.


Geophysics ◽  
2003 ◽  
Vol 68 (5) ◽  
pp. 1650-1661 ◽  
Author(s):  
Sergey Fomel

Velocity continuation is an imaginary continuous process of seismic image transformation in the postmigration domain. It generalizes the concepts of residual and cascaded migrations. Understanding the laws of velocity continuation is crucially important for a successful application of time‐migration velocity analysis. These laws predict the changes in the geometry and intensity of reflection events on migrated images with the change of the migration velocity. In this paper, I derive kinematic and dynamic laws for the case of prestack residual migration from simple geometric principles. The main theoretical result is a decomposition of prestack velocity continuation into three different components corresponding to residual normal moveout, residual dip moveout, and residual zero‐offset migration. I analyze the contribution and properties of each of the three components separately. This theory forms the basis for constructing efficient finite‐difference and spectral algorithms for time‐migration velocity analysis.


Sign in / Sign up

Export Citation Format

Share Document