Seismic reservoir characterization in resource shale plays: “Sweet spot” discrimination and optimization of horizontal well placement

Author(s):  
Arcangelo Sena ◽  
Gabino Castillo ◽  
Kevin Chesser ◽  
Simon Voisey ◽  
Jorge Estrada ◽  
...  
2011 ◽  
Vol 30 (7) ◽  
pp. 758-764 ◽  
Author(s):  
Arcangelo Sena ◽  
Gabino Castillo ◽  
Kevin Chesser ◽  
Simon Voisey ◽  
Jorge Estrada ◽  
...  

2021 ◽  
Author(s):  
Xinglin Wang ◽  
◽  
Philip M. Singer ◽  
Zeliang Chen ◽  
Yunke Liu ◽  
...  

Of particular interest in unconventional reservoir characterization is an NMR log of total porosity and macro-pore hydrocarbon saturation, where both quantities are independent of a mineralogy model. A log of the macro-pore hydrocarbon saturation has a direct impact on calculating hydrocarbon reserves. It helps identify sweet spots in the reservoir to optimize horizontal-well placement for hydraulic fracturing and production. It also helps avoid water production which would negatively affect the economics of the well. However, NMR logs in unconventional shale are challenging due to potential overlapping signal in the 1-dimensional (1-D) 𝑇𝑇2 domain between micropore water and bound hydrocarbon (i.e. bitumen), and, macro-pore water and hydrocarbons. In response to this challenge, NMR core-analysis in unconventional organic-shale has proven that 2-dimensional (2-D) 𝑇𝑇1 − 𝑇𝑇2 correlation maps and the 𝑇𝑇1/𝑇𝑇2 ratio can be a powerful technique for fluid typing and saturation. One limitation is that these techniques often just compare fully hydrocarbon-saturated with fully brine-saturated cores to calibrate a set of cutoffs in 𝑇𝑇1, 𝑇𝑇2, and/or 𝑇𝑇1/𝑇𝑇2 ratio. These cutoffs are then blindly applied to 𝑇𝑇1 − 𝑇𝑇2 maps from logs or cores of unknown saturation to determine the macro-pore hydrocarbon saturation in the unconventional organic shale. An example from the unconventional Point-Pleasant formation is shown where the traditional 𝑇𝑇1 − 𝑇𝑇2 cutoff technique to determine macro-pore hydrocarbon saturation breaks down, which is remedied by measuring 𝑇𝑇1 − 𝑇𝑇2 maps on mixed hydrocarbon-water saturated cores. The results show that instead of using cutoffs, the log-mean 𝑇𝑇1 , log-mean 𝑇𝑇2 , and log-mean 𝑇𝑇1/𝑇𝑇2 ratio correlate strongly against macro-pore hydrocarbon saturation of the mixed-saturated cores. In particular, for the Point-Pleasant organic-shale formation, the log-mean 𝑇𝑇1 is much more sensitive to macro-pore hydrocarbon saturation than the log-mean 𝑇𝑇2 or log-mean 𝑇𝑇1/𝑇𝑇2 ratio. The calibration of macro-pore hydrocarbon saturation from log-mean 𝑇𝑇1 is found to be different above and below a para-sequence boundary (nonconformity) in the organic-shale interval, the results of which can be used to interpret NMR logs. Details of the time-efficient technique used to obtain the mixed hydrocarbon-water saturated cores are shown.


2007 ◽  
Author(s):  
Ken E.T. Halward ◽  
Joe Emery ◽  
Rod Christensen ◽  
Daniel Joseph Bourgeois ◽  
Grant Skinner ◽  
...  

2021 ◽  
Author(s):  
Yessica Fransisca ◽  
Karinka Adiandra ◽  
Vinda Manurung ◽  
Laila Warkhaida ◽  
M. Aidil Arham ◽  
...  

Abstract This paper describes the combination of strategies deployed to optimize horizontal well placement in a 40 ft thick isotropic sand with very low resistivity contrast compared to an underlying anisotropic shale in Semoga field. These strategies were developed due to previously unsuccessful attempts to drill a horizontal well with multiple side-tracks that was finally drilled and completed as a high-inclined well. To maximize reservoir contact of the subject horizontal well, a new methodology on well placement was developed by applying lessons learned, taking into account the additional challenges within this well. The first approach was to conduct a thorough analysis on the previous inclined well to evaluate each formation layer’s anisotropy ratio to be used in an effective geosteering model that could better simulate the real time environment. Correct selections of geosteering tools based on comprehensive pre-well modelling was considered to ensure on-target landing section to facilitate an effective lateral section. A comprehensive geosteering pre-well model was constructed to guide real-time operations. In the subject horizontal well, landing strategy was analysed in four stages of anisotropy ratio. The lateral section strategy focused on how to cater for the expected fault and maintain the trajectory to maximize reservoir exposure. Execution of the geosteering operations resulted in 100% reservoir contact. By monitoring the behaviour of shale anisotropy ratio from resistivity measurements and gamma ray at-bit data while drilling, the subject well was precisely landed at 11.5 ft TVD below the top of target sand. In the lateral section, wellbore trajectory intersected two faults exhibiting greater associated throw compared to the seismic estimate. Resistivity geo-signal and azimuthal resistivity responses were used to maintain the wellbore attitude inside the target reservoir. In this case history well with a low resistivity contrast environment, this methodology successfully enabled efficient operations to land the well precisely at the target with minimum borehole tortuosity. This was achieved by reducing geological uncertainty due to anomalous resistivity data responding to shale electrical anisotropy. Recognition of these electromagnetic resistivity values also played an important role in identifying the overlain anisotropic shale layer, hence avoiding reservoir exit. This workflow also helped in benchmarking future horizontal well placement operations in Semoga Field. Technical Categories: Geosteering and Well Placement, Reservoir Engineering, Low resistivity Low Contrast Reservoir Evaluation, Real-Time Operations, Case Studies


Sign in / Sign up

Export Citation Format

Share Document