Common-reflection-surface-based workflow for diffraction imaging

Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. S187-S195 ◽  
Author(s):  
Sergius Dell ◽  
Dirk Gajewski

Imaging of diffractions is a challenge in seismic processing. Standard seismic processing is tuned to enhance reflections. Separation of diffracted from reflected events is frequently used to achieve an optimized image of diffractions. We present a method to effectively separate and image diffracted events in the time domain. The method is based on the common-reflection-surface-based diffraction stacking and the application of a diffraction-filter. The diffraction-filter uses kinematic wavefield attributes determined by the common-reflection-surface approach. After the separation of seismic events, poststack time-migration velocity analysis is applied to obtain migration velocities. The velocity analysis uses a semblance based method of diffraction traveltimes. The procedure is incorporated into the conventional common-reflection-surface workflow. We apply the procedure to 2D synthetic data. The application of the method to simple and complex synthetic data shows promising results.

Geophysics ◽  
2021 ◽  
pp. 1-50
Author(s):  
German Garabito ◽  
José Silas dos Santos Silva ◽  
Williams Lima

In land seismic data processing, the prestack time migration (PSTM) image remains the standard imaging output, but a reliable migrated image of the subsurface depends on the accuracy of the migration velocity model. We have adopted two new algorithms for time-domain migration velocity analysis based on wavefield attributes of the common-reflection-surface (CRS) stack method. These attributes, extracted from multicoverage data, were successfully applied to build the velocity model in the depth domain through tomographic inversion of the normal-incidence-point (NIP) wave. However, there is no practical and reliable method for determining an accurate and geologically consistent time-migration velocity model from these CRS attributes. We introduce an interactive method to determine the migration velocity model in the time domain based on the application of NIP wave attributes and the CRS stacking operator for diffractions, to generate synthetic diffractions on the reflection events of the zero-offset (ZO) CRS stacked section. In the ZO data with diffractions, the poststack time migration (post-STM) is applied with a set of constant velocities, and the migration velocities are then selected through a focusing analysis of the simulated diffractions. We also introduce an algorithm to automatically calculate the migration velocity model from the CRS attributes picked for the main reflection events in the ZO data. We determine the precision of our diffraction focusing velocity analysis and the automatic velocity calculation algorithms using two synthetic models. We also applied them to real 2D land data with low quality and low fold to estimate the time-domain migration velocity model. The velocity models obtained through our methods were validated by applying them in the Kirchhoff PSTM of real data, in which the velocity model from the diffraction focusing analysis provided significant improvements in the quality of the migrated image compared to the legacy image and to the migrated image obtained using the automatically calculated velocity model.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE161-VE171 ◽  
Author(s):  
J. Schleicher ◽  
J. C. Costa ◽  
A. Novais

Image-wave propagation or velocity continuation describes the variation of the migrated position of a seismic event as a function of migration velocity. Image-wave propagation in the common-image gather (CIG) domain can be combined with residual-moveout analysis for iterative migration velocity analysis (MVA). Velocity continuation of CIGs leads to a detection of those velocities in which events flatten. Although image-wave continuation is based on the assumption of a constant migration velocity, the procedure can be applied in inhomogeneous media. For this purpose, CIGs obtained by migration with an inhomogeneous macrovelocity model are continued starting from a constant reference velocity. The interpretation of continued CIGs, as if they were obtained from residual migrations, leads to a correction formula that translates residual flattening velocities into absolute time-migration velocities. In this way, the migration velocity model can be improved iteratively until a satisfactory result is reached. With a numerical example, we found that MVA with iterative image continuation applied exclusively to selected CIGs can construct a reasonable migration velocity model from scratch, without the need to build an initial model from a previous conventional normal-moveout/dip-moveout velocity analysis.


Geophysics ◽  
2017 ◽  
Vol 82 (2) ◽  
pp. U25-U35 ◽  
Author(s):  
Luke Decker ◽  
Dmitrii Merzlikin ◽  
Sergey Fomel

We perform seismic diffraction imaging and time-migration velocity analysis by separating diffractions from specular reflections and decomposing them into slope components. We image the slope components using migration velocity extrapolation in time-space-slope coordinates. The extrapolation is described by a convection-type partial differential equation and implemented in a highly parallel manner in the Fourier domain. Synthetic and field data experiments show that the proposed algorithms are able to detect accurate time-migration velocities by measuring the flatness of diffraction events in slope gathers for single- and multiple-offset data.


Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. S47-S55 ◽  
Author(s):  
Parsa Bakhtiari Rad ◽  
Benjamin Schwarz ◽  
Dirk Gajewski ◽  
Claudia Vanelle

Diffraction imaging can lead to high-resolution characterization of small-scale subsurface structures. A key step of diffraction imaging and tomography is diffraction separation and enhancement, especially in the full prestack data volume. We have considered point diffractors and developed a robust and fully data-driven workflow for prestack diffraction separation based on wavefront attributes, which are determined using the common-reflection-surface (CRS) method. In the first of two steps, we apply a zero-offset-based extrapolation operator for prestack diffraction separation, which combines the robustness and stability of the zero-offset CRS processing with enhanced resolution and improved illumination of the finite-offset CRS processing. In the second step, when the finite-offset diffracted events are separated, we apply a diffraction-based time migration velocity model building that provides high-quality diffraction velocity spectra. Applications of the new workflow to 2D/3D complex synthetic data confirm the superiority of prestack diffraction separation over the poststack method as well as the high potential of diffractions for improved time imaging.


Geophysics ◽  
2021 ◽  
pp. 1-60
Author(s):  
Chuang Li ◽  
Zhaoqi Gao ◽  
Jinghuai Gao ◽  
Feipeng Li ◽  
Tao Yang

Angle-domain common-image gathers (ADCIGs) that can be used for migration velocity analysis and amplitude versus angle analysis are important for seismic exploration. However, because of limited acquisition geometry and seismic frequency band, the ADCIGs extracted by reverse time migration (RTM) suffer from illumination gaps, migration artifacts, and low resolution. We have developed a reflection angle-domain pseudo-extended plane-wave least-squares RTM method for obtaining high-quality ADCIGs. We build the mapping relations between the ADCIGs and the plane-wave sections using an angle-domain pseudo-extended Born modeling operator and an adjoint operator, based on which we formulate the extraction of ADCIGs as an inverse problem. The inverse problem is iteratively solved by a preconditioned stochastic conjugate gradient method, allowing for reduction in computational cost by migrating only a subset instead of the whole dataset and improving image quality thanks to preconditioners. Numerical tests on synthetic and field data verify that the proposed method can compensate for illumination gaps, suppress migration artifacts, and improve resolution of the ADCIGs and the stacked images. Therefore, compared with RTM, the proposed method provides a more reliable input for migration velocity analysis and amplitude versus angle analysis. Moreover, it also provides much better stacked images for seismic interpretation.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. S437-S447 ◽  
Author(s):  
Jean-Philippe Montel ◽  
Gilles Lambaré

Common-image gathers are a useful output of the migration process. Their kinematic behavior (i.e., the way they curve up or down) is an indicator of the quality of the velocity model used for migration. Traditionally, when used for migration velocity analysis, we pick structural dips in the common attribute panels (offset, angle, etc.) and residual moveout (RMO) in the gathers. The measured RMO will then tell us how much we need to update the velocity model to improve the gather’s flatness. Understanding the kinematics of the picked events is the key to an accurate model update. This point has been widely underestimated in many cases. For example, when dealing with angle gathers, there is a general assumption that the associated tomographic rays are fully defined by the picked structural dips and the gather opening and azimuth angle, and that if the velocity model is correctly updated down to a given horizon, it is not necessary to shoot the tomographic rays upward through this horizon. We find through an original theoretical analysis that both of these assumptions have to be modified when the gathers exhibit RMO. Using a kinematic analysis, we determine that knowledge of the RMO slopes is necessary to compute the tomographic rays.


Sign in / Sign up

Export Citation Format

Share Document