Common-image gathers in the incident phase-angle domain from reverse time migration in 2D elastic VTI media
Reverse time migration (RTM) was implemented with a modified crosscorrelation imaging condition for data from 2D elastic vertically transversely isotropy (VTI) media. The computation cost was reduced because scalar qP- and qS-wavefield separations are performed in VTI media, for the source and receiver wavefields only at the RTM imaging time, to calculate the migrated qP and qS images. Angle-domain common-image gathers (CIGs) were extracted from qPqP and qPqS common-source RTM images. The local incident angle was produced as the difference between the qP-wave phase angle, obtained directly from the source wavefield polarization, and the normal to the reflector, calculated as the instantaneous wavenumber direction via a directional Hilbert transform of the stacked image. Angle-domain CIGs were extracted by reordering the prestack-migrated images by local incident phase angle, source by source. Vector decomposition of the source qP-wavefield was required to calculate the qP-wave phase polarization direction for each image point at its imaging time. RTM and angle-domain CIG extraction were successfully implemented and illustrated with a synthetic 2D elastic VTI example.