Anisotropic parsimonious prestack depth migration

Geophysics ◽  
2013 ◽  
Vol 78 (1) ◽  
pp. S25-S36 ◽  
Author(s):  
Ernesto V. Oropeza ◽  
George A. McMechan

An efficient Kirchhoff-style prestack depth migration, called “parsimonious” migration, was developed a decade ago for isotropic 2D and 3D media by using measured slownesses to reduce the amount of ray tracing by orders of magnitude. It is conceptually similar to “map” migration, but its implementation has some differences. We have extended this approach to 2D tilted transversely isotropic (TTI) media and illustrated it with synthetic P-wave data. Although the framework of isotropic parsimonious may be retained, the extension to TTI media requires redevelopment of each of the numerical components, calculation of the phase and group velocity for TTI media, development of a new two-point anisotropic ray tracer, and substitution of an initial-angle isotropic shooting ray-trace algorithm for an anisotropic one. The model parameterization consists of Thomsen’s parameters ([Formula: see text], [Formula: see text], [Formula: see text]) and the tilt angle of the symmetry axis of the TI medium. The parsimonious anisotropic migration algorithm is successfully applied to synthetic data from a TTI version of the Marmousi2 model. The quality of the image improves by weighting the impulse response by the calculation of the anisotropic Fresnel radius. The accuracy and speed of this migration makes it useful for anisotropic velocity model building. The elapsed computing time for 101 shots for the Marmousi2 TTI model is 35 s per shot (each with 501 traces) in 32 Opteron cores.

Geophysics ◽  
2004 ◽  
Vol 69 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Dhananjay Kumar ◽  
Mrinal K. Sen ◽  
Robert J. Ferguson

The principal objective of our work is to develop a technique for prestack depth migration in tilted transversely isotropic (TTI) media in which the axis of symmetry is not vertical and may be spatially varying. Such models are required to image seismic data in geologically complex regions such as the Canadian Foothills. We have developed a 2D Kirchhoff integral‐based migration algorithm in which the traveltime computation comprises the major task. Among the existing traveltime computation algorithms such as ray tracing with interpolation, ray bending, and eikonal solvers, a direct or a brute force approach of traveltime computation is generally highly robust. We have modified a direct method of first‐arrival P‐wave traveltime computation in 2D media that accounts for TTI. The algorithm requires that the group velocity be computed at each gridpoint, using either an analytic solution or by an approximate Fourier series expansion. The P‐wave traveltime contours computed for complex geologic models show the pronounced effects from TTI media. Our results, using laboratory P‐wave data collected over a physical model of an anisotropic thrust sheet, reveal that a 2D Kirchhoff migration based on our traveltime algorithm (TTI model) images the structure beneath the thrust sheet very well. The vertical transversely isotropic (assuming a vertical axis of symmetry) or isotropic imaging introduces false anticlinal structures. We compare our results with those obtained by a recursive‐extrapolation method and find that our approach images the underside of one of the thrust sheets better.


1996 ◽  
Vol 15 (6) ◽  
pp. 751-753 ◽  
Author(s):  
Y. C. Kim ◽  
C. M. Samuelsen ◽  
T. A. Hauge

Geophysics ◽  
2004 ◽  
Vol 69 (4) ◽  
pp. 1053-1070 ◽  
Author(s):  
Einar Iversen

The isochron, the name given to a surface of equal two‐way time, has a profound position in seismic imaging. In this paper, I introduce a framework for construction of isochrons for a given velocity model. The basic idea is to let trajectories called isochron rays be associated with iso chrons in an way analogous to the association of conventional rays with wavefronts. In the context of prestack depth migration, an isochron ray based on conventional ray theory represents a simultaneous downward continuation from both source and receiver. The isochron ray is a generalization of the normal ray for poststack map migration. I have organized the process with systems of ordinary differential equations appearing on two levels. The upper level is model‐independent, and the lower level consists of conventional one‐way ray tracing. An advantage of the new method is that interpolation in a ray domain using isochron rays is able to treat triplications (multiarrivals) accurately, as opposed to interpolation in the depth domain based on one‐way traveltime tables. Another nice property is that the Beylkin determinant, an important correction factor in amplitude‐preserving seismic imaging, is closely related to the geometric spreading of isochron rays. For these reasons, the isochron ray has the potential to become a core part of future implementations of prestack depth migration. In addition, isochron rays can be applied in many contexts of forward and inverse seismic modeling, e.g., generation of Fresnel volumes, map migration of prestack traveltime events, and generation of a depth‐domain–based cost function for velocity model updating.


1992 ◽  
Author(s):  
Geoffrey F. Mills ◽  
Matthew Brzostowski ◽  
Stephen Ridgway ◽  
Wen Fong Chang ◽  
Chuck Barton

Geophysics ◽  
1997 ◽  
Vol 62 (2) ◽  
pp. 568-576 ◽  
Author(s):  
Young C. Kim ◽  
Worth B. Hurt, ◽  
Louis J. Maher ◽  
Patrick J. Starich

The transformation of surface seismic data into a subsurface image can be separated into two components—focusing and positioning. Focusing is associated with ensuring the data from different offsets are contributing constructively to the same event. Positioning involves the transformation of the focused events into a depth image consistent with a given velocity model. In prestack depth migration, both of these operations are achieved simultaneously; however, for 3-D data, the cost is significant. Prestack time migration is much more economical and focuses events well even in the presence of moderate velocity variations, but suffers from mispositioning problems. Hybrid migration is a cost‐effective depth‐imaging approach that uses prestack time migration for focusing; inverse migration for the removal of positioning errors; and poststack depth migration for proper positioning. When lateral velocity changes are moderate, the hybrid technique can generate a depth image that is consistent with a velocity field. For very complex structures that require prestack depth migration, the results of the hybrid technique can be used to create a starting velocity model, thereby reducing the number of iterations for velocity model building.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE13-VE23 ◽  
Author(s):  
Frank Adler ◽  
Reda Baina ◽  
Mohamed Amine Soudani ◽  
Pierre Cardon ◽  
Jean-Baptiste Richard

Velocity-model estimation with seismic reflection tomography is a nonlinear inverse problem. We present a new method for solving the nonlinear tomographic inverse problem using 3D prestack-depth-migrated reflections as the input data, i.e., our method requires that prestack depth migration (PSDM) be performed before tomography. The method is applicable to any type of seismic data acquisition that permits seismic imaging with Kirchhoff PSDM. A fundamental concept of the method is that we dissociate the possibly incorrect initial migration velocity model from the tomographic velocity model. We take the initial migration velocity model and the residual moveout in the associated PSDM common-image gathers as the reference data. This allows us to consider the migrated depth of the initial PSDM as the invariant observation for the tomographic inverse problem. We can therefore formulate the inverse problem within the general framework of inverse theory as a nonlinear least-squares data fitting between observed and modeled migrated depth. The modeled migrated depth is calculated by ray tracing in the tomographic model, followed by a finite-offset map migration in the initial migration model. The inverse problem is solved iteratively with a Gauss-Newton algorithm. We applied the method to a North Sea data set to build an anisotropic layer velocity model.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE255-VE260 ◽  
Author(s):  
J. Helen Isaac ◽  
Don C. Lawton

We developed velocity models to prestack depth migrate two seismic lines acquired in an area of complex mountainous geology in southern Alberta, Canada. Initial processing in the time domain was designed to attenuate noise and enhance the signal in the data. The prestack and poststack time-migrated sections were poorly focused, implying the velocity models would be inadequate for prestack depth migration. The velocity models for prestack depth migration, developed by flattening reflections on common image gathers, ineffectively imaged the complex geology. We developed our most effective velocity models by integrating the mapped surface geology and dips, well formation tops, geological cross sections, and seismic-velocity information into the interpretation of polygonal areas of constant velocity on several iterations of prestack depth-migrated seismic sections. The resulting depth-processed sections show a more geologically realistic geometry for the reflectors at depth and achieve better focusing than either the time-migrated sections or the depth sections migrated with velocity models derived by flattening reflections on offset gathers.


2002 ◽  
Author(s):  
Robert A. Meek ◽  
Phil D. Anno ◽  
Joel D. Brewer ◽  
Mario Coral

Sign in / Sign up

Export Citation Format

Share Document