effective velocity
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 21)

H-INDEX

13
(FIVE YEARS 3)

Geophysics ◽  
2021 ◽  
pp. 1-92
Author(s):  
Xingda Jiang ◽  
Wei Zhang ◽  
Hui Yang ◽  
Chaofeng Zhao ◽  
Zixuan Wang

In downhole microseismic monitoring, the velocity model plays a vital role in accurate mapping of the hydraulic fracturing image. For velocity model uncertainties in the number of layers or interface depths, the conventional velocity calibration method has been shown to effectively locate the perforation shots; however, it introduces non-negligible location errors for microseismic events, especially for complex geological formations with inclinations. To improve the event location accuracy, we exploit the advantages of the reversible jump Markov chain Monte Carlo (rjMCMC) approach in generating different dimensions of velocity models and propose a transdimensional Bayesian simultaneous inversion framework for obtaining the effective velocity structure and event locations simultaneously. The transdimensional inversion changes the number of layers during the inversion process and selects the optimal interface depths and velocity values to improve the event location accuracy. The confidence intervals of the simultaneous inversion event locations estimated by Bayesian inference enable us to evaluate the location uncertainties in the horizontal and vertical directions. Two synthetic examples and a field test are presented to illustrate the performance of our methodology, and the event location accuracy is shown to be higher than that obtained using the conventional methods. With less dependence on prior information, the proposed transdimensional simultaneous inversion method can be used to obtain an effective velocity structure for facilitating highly accurate hydraulic fracturing mapping.


2021 ◽  
Vol 21 (11) ◽  
pp. 8823-8843
Author(s):  
Thomas von Clarmann ◽  
Udo Grabowski ◽  
Gabriele P. Stiller ◽  
Beatriz M. Monge-Sanz ◽  
Norbert Glatthor ◽  
...  

Abstract. Measurements of long-lived trace gases (SF6, CFC-11, CFC-12, HCFC-22, CCl4, N2O, CH4, H2O, and CO) performed with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) have been used to infer the stratospheric and mesospheric meridional circulation. The MIPAS data set covers the time period from July 2002 to April 2012. The method used for this purpose was the direct inversion of the two-dimensional continuity equation for the concentrations of trace gases and air density. This inversion predicts an “effective velocity” that gives the best fit for the evolution of the concentrations on the assumption that an explicit treatment of Fickian diffusion can be neglected. These effective velocity fields are used to characterize the mean meridional circulation. Multiannual monthly mean effective velocity fields are presented, along with their variabilities. According to this measure, the stratospheric circulation is found to be highly variable over the year, with a quite robust annual cycle. The new method allows us to track the evolution of various circulation patterns over the year in more detail than before. According to the effective velocity characterization of the circulation, the deep branch of the Brewer–Dobson circulation and the mesospheric overturning pole-to-pole circulation are not separate but intertwined phenomena. The latitude of stratospheric uplift in the middle and upper stratosphere is found to be quite variable and is not always found at equatorial latitudes. The usual schematic of stratospheric circulation with the deep and the shallow branch of the Brewer–Dobson circulation and the mesospheric overturning circulation is an idealization which best describes the observed atmosphere around equinox. Sudden stratospheric warmings and the quasi-biennial oscillation cause a pronounced year-to-year variability of the meridional circulation.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2492
Author(s):  
Dominik Bok ◽  
Daniel O’Hagan ◽  
Peter Knott

Radar detection and track building performance is an essential part of a radar system. A high realized coherent integration gain often contributes to an improved performance. This is essential to the successful detection and tracking of weak moving targets. However, the actual movement within the coherent processing interval can introduce range walk effects. The processing will then result in range and Doppler frequency resolutions that become finer than a single moving point scatterer’s spread over range and—often not considered—over Doppler frequency. In particular for a wide instantaneous bandwidth, the impact on the achievable integration gain can become severe already for a constant effective velocity. Therefore, high desired integration gains as required in passive radar are not easily achieved against relatively fast moving targets. The main intent of this article is to present the movement effects on a classical range-Doppler analysis to give an insight on the achievable performance and to quantify otherwise appearing degradations. Interestingly, a classical analysis of experimental datasets evaluated from a DVB-T based passive radar measurement campaign even resolved the fluctuation of a target response within the instantaneously processed bandwidth. The findings strengthen the need for advanced processing methods that can at least partly address individual implications of fast moving targets in real-time applications properly.


2021 ◽  
Author(s):  
Gabriel Wolf ◽  
Rémi Tailleux ◽  
Antoine Hochet ◽  
Till Kuhlbrodt ◽  
David Ferreira ◽  
...  

<p>Ocean heat uptake is a key process for climate change owing to its control of global mean temperature trends. To understand the underlying internal ocean processes and vertical heat transfer controlling it, ocean heat uptake has been often analysed in terms of the simple one-dimensional vertical advection diffusion model. The standard version of this model, formulated in terms of the horizontally-averaged potential temperature is known to poorly capture important effects such as isopycnal mixing, density-compensated temperature anomalies, meso-scale eddy-induced advection and the depth-varying ocean area.</p><p>To overcome this problem a new theoretical model of vertical heat transfer for the ocean heat uptake has been developed in an isopycnal framework that exploits advances achieved in the theory of water masses over the past 30 years or so. The new theoretical model describes the temporal evolution of the isopycnally-averaged thickness-weighted potential temperature in terms of an effective velocity that depends uniquely on the surface heating conditionally integrated in density classes, an effective diapycnal diffusivity controlled by isoneutral and dianeutral mixing, and an additional term linked to the meridional transport of density-compensated temperature anomalies by the diabatic residual overturning circulation. The advantage of the isopycnally-averaged construction over the horizontally-averaged construction is that all the terms that enters it have explicit analytical expressions that are more easily evaluated from observations or model outputs, as well as having clearer physical interpretations.</p><p>As a first step, the terms of this new model of ocean heat uptake are evaluated by using a range of different datasets, net surface heat flux products and temporal averages to evaluate their sensitivity to input fields. One key feature of the new model is that its effective velocity and diffusivity are positive over most of the ocean column depth. This is in contrast to the horizontally-averaged construction, in which downwelling and ant-diffusive behavior were occasionally observed in previous studies. The hope is that this insight can then be used to develop an improved representation of ocean heat uptake in simple climate models.</p>


RBRH ◽  
2021 ◽  
Vol 26 ◽  
Author(s):  
Lélis Espartel ◽  
Rafael Manica

ABSTRACT The initial stages of instantaneous dam-break waves are here evaluated spatially and temporally through 36 physical experiments. Different conditions were tested for downstream (J) and upstream (M) water depths and their ratios (r) to approach realistic conditions for prototype dams. Two non-dimensional parameters are proposed – effective height (HEF) and effective velocity (VEF) – to evaluate water depths and velocity peaks along the dam-break wave evolution. The maximum wave height is estimated as a function of r, whereas the HEF is inversely related to r. The maximum VEF peak is registered for r between 0.1 and 0.2, considered a critical description for real dams. The presence of downstream water depth also modifies the dam-break wave frontal shape and types of wave break features. Previously published classifications of the moving wave based on those features are now expanded with a first tested r = 0.8 in which no jet was identified (undulated movement).


Author(s):  
Ahtisham Ul Haq Pampori ◽  
Sheikh Aamir Ahsan ◽  
Raghvendra Dangi ◽  
Umakant Goyal ◽  
Sanjay Kumar Tomar ◽  
...  
Keyword(s):  

2020 ◽  
Vol 17 (04) ◽  
pp. 809-841
Author(s):  
Paulo Amorim ◽  
Florent Berthelin ◽  
Thierry Goudon

We consider a non-local scalar conservation law in two space dimensions which arises as the formal hydrodynamic limit of a Fokker–Planck equation. This Fokker–Planck equation is, in turn, the kinetic description of an individual-based model describing the navigation of self-propelled particles in a pheromone landscape. The pheromone may be linked to the agent distribution itself, leading to a nonlinear, non-local scalar conservation law where the effective velocity vector depends on the pheromone field in a small region around each point, and thus, on the solution itself. After presenting and motivating the problem, we present some numerical simulations of a closely related problem, and then prove a well-posedness and stability result for the conservation law.


2020 ◽  
pp. 58-68 ◽  
Author(s):  
Roman F. Nalewajski

Classical issues of local continuities and density partition in molecular quantum mechanics are reexamined. An effective velocity of the probability current is identified as the current-per-particle and its properties are explored. The local probability acceleration and the associated force concept are introduced. They are shown to identically vanish in the stationary electronic states. This acceleration measure also determines the associated productions of physical currents, e.g., the local source of the resultant content of electronic gradient information. The probability partitioning between reactants is revisited and illustrated using the stockholder division rule of Hirshfeld. A simple orbital model is used to describe the polarized (disentangled) and equilibrium (entangled) molecular fragments containing the distinguishable and indistinguishable groups of electrons, respectively, and their mixed quantum character is emphasized. The fragment density matrix is shown to determine the subsystem internal electron communications.


Sign in / Sign up

Export Citation Format

Share Document