Subsalt velocity estimation by target-oriented wave-equation migration velocity analysis: A 3D field-data example

Geophysics ◽  
2013 ◽  
Vol 78 (1) ◽  
pp. U19-U29 ◽  
Author(s):  
Yaxun Tang ◽  
Biondo Biondi

We apply target-oriented wave-equation migration velocity analysis to a 3D field data set acquired from the Gulf of Mexico. Instead of using the original surface-recorded data set, we use a new data set synthesized specifically for velocity analysis to update subsalt velocities. The new data set is generated based on an initial unfocused target image and by a novel application of 3D generalized Born wavefield modeling, which correctly preserves velocity kinematics by modeling zero and nonzero subsurface-offset-domain images. The target-oriented inversion strategy drastically reduces the data size and the computation domain for 3D wave-equation migration velocity analysis, greatly improving its efficiency and flexibility. We apply differential semblance optimization (DSO) using the synthesized new data set to optimize subsalt velocities. The updated velocity model significantly improves the continuity of subsalt reflectors and yields flattened angle-domain common-image gathers.

Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE145-VE159 ◽  
Author(s):  
Paul Sava ◽  
Ioan Vlad

Wave-equation migration velocity analysis (MVA) is a technique similar to wave-equation tomography because it is designed to update velocity models using information derived from full seismic wavefields. On the other hand, wave-equation MVA is similar to conventional, traveltime-based MVA because it derives the information used for model updates from properties of migrated images, e.g., focusing and moveout. The main motivation for using wave-equation MVA is derived from its consistency with the corresponding wave-equation migration, which makes this technique robust and capable of handling multipathing characterizing media with large and sharp velocity contrasts. The wave-equation MVA operators are constructed using linearizations of conventional wavefield extrapolation operators, assuming small perturbations relative to the background velocity model. Similar to typical wavefield extrapolation operators, the wave-equation MVA operators can be implemented in the mixed space-wavenumber domain using approximations of differentorders of accuracy. As for wave-equation migration, wave-equation MVA can be formulated in different imaging frameworks, depending on the type of data used and image optimization criteria. Examples of imaging frameworks correspond to zero-offset migration (designed for imaging based on focusing properties of the image), survey-sinking migration (designed for imaging based on moveout analysis using narrow-azimuth data), and shot-record migration (also designed for imaging based on moveout analysis, but using wide-azimuth data). The wave-equation MVA operators formulated for the various imaging frameworks are similar because they share elements derived from linearizations of the single square-root equation. Such operators represent the core of iterative velocity estimation based on diffraction focusing or semblance analysis, and their applicability in practice requires efficient and accurate implementation. This tutorial concentrates strictly on the numeric implementation of those operators and not on their use for iterative migration velocity analysis.


Geophysics ◽  
2021 ◽  
pp. 1-68
Author(s):  
Alejandro Cabrales-Vargas ◽  
Rahul Sarkar ◽  
Biondo L. Biondi ◽  
Robert G. Clapp

During linearized waveform inversion, the presence of small inaccuracies in the background subsurface model can lead to unfocused seismic events in the final image. The effect on the amplitude can mislead the interpretation. We present a joint inversion scheme in the model domain of the reflectivity and the background velocity model. The idea is to unify the inversion of the background and the reflectivity model into a single framework instead of treating them as decoupled problems. We show that with this method, we can obtain a better estimate of the reflectivity than that obtained with conventional linearized waveform inversion. Conversely, the background model is improved by the joint inversion with the reflectivity in comparison with wave-equation migration velocity analysis. We perform tests on 2D synthetics and 3D field data that demonstrate both benefits.


Geophysics ◽  
2002 ◽  
Vol 67 (4) ◽  
pp. 1202-1212 ◽  
Author(s):  
Hervé Chauris ◽  
Mark S. Noble ◽  
Gilles Lambaré ◽  
Pascal Podvin

We present a new method based on migration velocity analysis (MVA) to estimate 2‐D velocity models from seismic reflection data with no assumption on reflector geometry or the background velocity field. Classical approaches using picking on common image gathers (CIGs) must consider continuous events over the whole panel. This interpretive step may be difficult—particularly for applications on real data sets. We propose to overcome the limiting factor by considering locally coherent events. A locally coherent event can be defined whenever the imaged reflectivity locally shows lateral coherency at some location in the image cube. In the prestack depth‐migrated volume obtained for an a priori velocity model, locally coherent events are picked automatically, without interpretation, and are characterized by their positions and slopes (tangent to the event). Even a single locally coherent event has information on the unknown velocity model, carried by the value of the slope measured in the CIG. The velocity is estimated by minimizing these slopes. We first introduce the cost function and explain its physical meaning. The theoretical developments lead to two equivalent expressions of the cost function: one formulated in the depth‐migrated domain on locally coherent events in CIGs and the other in the time domain. We thus establish direct links between different methods devoted to velocity estimation: migration velocity analysis using locally coherent events and slope tomography. We finally explain how to compute the gradient of the cost function using paraxial ray tracing to update the velocity model. Our method provides smooth, inverted velocity models consistent with Kirchhoff‐type migration schemes and requires neither the introduction of interfaces nor the interpretation of continuous events. As for most automatic velocity analysis methods, careful preprocessing must be applied to remove coherent noise such as multiples.


Geophysics ◽  
2005 ◽  
Vol 70 (3) ◽  
pp. U19-U27 ◽  
Author(s):  
Paul C. Sava ◽  
Biondo Biondi ◽  
John Etgen

We propose a method for estimating interval velocity using the kinematic information in defocused diffractions and reflections. We extract velocity information from defocused migrated events by analyzing their residual focusing in physical space (depth and midpoint) using prestack residual migration. The results of this residual-focusing analysis are fed to a linearized inversion procedure that produces interval velocity updates. Our inversion procedure uses a wavefield-continuation operator linking perturbations of interval velocities to perturbations of migrated images, based on the principles of wave-equation migration velocity analysis introduced in recent years. We measure the accuracy of the migration velocity using a diffraction-focusing criterion instead of the criterion of flatness of migrated common-image gathers that is commonly used in migration velocity analysis. This new criterion enables us to extract velocity information from events that would be challenging to use with conventional velocity analysis methods; thus, our method is a powerful complement to those conventional techniques. We demonstrate the effectiveness of the proposed methodology using two examples. In the first example, we estimate interval velocity above a rugose salt top interface by using only the information contained in defocused diffracted and reflected events present in zero-offset data. By comparing the results of full prestack depth migration before and after the velocity updating, we confirm that our analysis of the diffracted events improves the velocity model. In the second example, we estimate the migration velocity function for a 2D, zero-offset, ground-penetrating radar data set. Depth migration after the velocity estimation improves the continuity of reflectors while focusing the diffracted energy.


Geophysics ◽  
2013 ◽  
Vol 78 (2) ◽  
pp. S69-S79 ◽  
Author(s):  
Jeffrey Shragge ◽  
David Lumley

Time-lapse (4D) analysis of seismic data acquired at different stages of hydrocarbon production or gas/fluid injection has been very successful at imaging detailed reservoir changes. Conventional time-domain analysis of 4D data sets usually assumes a linear perturbation about a reference baseline earth model. However, this assumption is violated when production/injection significantly alters the subsurface generating large 4D velocity changes, time shifts, and complicated 4D wavefield coda, necessitating a more robust 4D analysis involving prestack wave-equation depth migration and velocity analysis. We address these situations by extending conventional 3D wave-equation migration velocity analysis (WEMVA) based on one-way wave-equations and single-scattering theory to 4D velocity estimation using a “parallel” inversion approach involving parallel solution of two separate inversion problems. Recognizing that the 4D WEMVA strategy requires precomputed baseline/monitor image-difference volumes, we develop an approximate 4D WEMVA technique that replaces these differences with a single weight function derived from the smooth background time-lapse image difference. We demonstrate the usefulness of the parallel and an approximate 4D WEMVA approach using a synthetic time-lapse [Formula: see text] geosequestration experiment that requires inverting for a thin-layer velocity change derived from [Formula: see text] injection in an analogue North Sea reservoir. The parallel 4D WEMVA solutions generate an excellent high-resolution velocity estimates, whereas the approximate methods recover lower-resolution estimates with magnitudes that must be rescaled through a post-inversion gradient line-search.


Geophysics ◽  
2008 ◽  
Vol 73 (6) ◽  
pp. S241-S249 ◽  
Author(s):  
Xiao-Bi Xie ◽  
Hui Yang

We have derived a broadband sensitivity kernel that relates the residual moveout (RMO) in prestack depth migration (PSDM) to velocity perturbations in the migration-velocity model. We have compared the kernel with the RMO directly measured from the migration image. The consistency between the sensitivity kernel and the measured sensitivity map validates the theory and the numerical implementation. Based on this broadband sensitivity kernel, we propose a new tomography method for migration-velocity analysis and updating — specifically, for the shot-record PSDM and shot-index common-image gather. As a result, time-consuming angle-domain analysis is not required. We use a fast one-way propagator and multiple forward scattering and single backscattering approximations to calculate the sensitivity kernel. Using synthetic data sets, we can successfully invert velocity perturbations from the migration RMO. This wave-equation-based method naturally incorporates the wave phenomena and is best teamed with the wave-equation migration method for velocity analysis. In addition, the new method maintains the simplicity of the ray-based velocity analysis method, with the more accurate sensitivity kernels replacing the rays.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB151-WB167 ◽  
Author(s):  
Claudio Guerra ◽  
Biondo Biondi

In areas of complex geology, migration-velocity estimation should use methods that describe the complexity of wavefield propagation, such as focusing and defocusing, multipathing, and frequency-dependent velocity sensitivity. Migration-velocity analysis by wavefield extrapolation has the ability to address these issues because, in contrast to ray-based methods, it uses wavefields as carriers of information. However, its high cost and lack of flexibility with respect to model parametrization and to target-oriented analysis have prevented its routine industrial use. We overcome those limitations by using new types of wavefields as carriers of information: the image-space generalized wavefields. These wavefields are synthesized from a prestack image computed with wavefield-extrapolation methods, using the prestack exploding-reflector model. Cost of migration-velocity analysis (MVA) by wavefield extrapolation is decreased because only a small number of image-space generalized wavefields are necessary to accurately describe the kinematics of velocity errors and because these wavefields can be easily used in a target-oriented way. Flexibility is naturally incorporated because modeling these wavefields has as the initial conditions selected reflectors, which allow use of a horizon-based parametrization of the model space. In a 3D example of the North Sea, we show that using wavefields synthesized by the prestack exploding-reflector model greatly improves efficiency of MVA by wavefield extrapolation, while yielding a final migration-velocity model that is accurate as evidenced by well focused and structurally reasonable reflectors.


Sign in / Sign up

Export Citation Format

Share Document