scholarly journals Earthquake-faulting-related deformation in soil evidenced in S-wave shallow reflection data: Field results from Portugal

Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. IM97-IM108 ◽  
Author(s):  
João Carvalho ◽  
Ranajit Ghose ◽  
Daniela Alves ◽  
Jaime Leote

Expressions of ductile, soft-sediment deformations induced by ground movements due to past earthquakes are difficult to recognize in near-surface soils. We have carried out shallow S-wave reflection studies in a seismically active area located northeast of metropolitan Lisbon, Portugal. Identifying shallow disturbed zones and hidden fault segments in this area is important but quite difficult because of small vertical slips due to earthquakes, the Holocene alluvial cover hiding the fault segments, and a high rate of surficial sedimentation. We have performed S-wave reflection profiling at two sites — Vila Franca Xira and Castanheira de Ribatejo. We detected different but interrelated evidence of soft-sediment deformation in the seismic data. This evidence includes sharp lateral changes in the S-wave velocity field; changes in the reflection horizons in stacked sections; aligned diffractions in unmigrated sections; discontinuities in common-offset gathers; and discontinuities, backscattered, and diffracted arrivals in common-source gathers. Though not equally clear everywhere, this evidence is recognizable at many locations where earthquake-motion-induced disturbed zones are interpreted. To confirm these interpretations, we have performed synthetic modeling of a seismic wavefield using the same acquisition geometry as in the field experiments, and with multiple disturbed zones present as vertical emplacements through horizontally lying soil layers. The modeling results resemble the observations in field data. It is possible to confirm the signatures of soft-sediment deformation in the shallow S-wave reflection data. The approach that we used will be useful in many seismically active, soil-covered areas in the world.

2020 ◽  
Vol 90 (9) ◽  
pp. 1068-1093
Author(s):  
Marjorie A. Chan ◽  
Stephen T. Hasiotis ◽  
Judith Totman Parrish

ABSTRACT Extensive soft-sediment deformation (SSD) of multiple expressions and scales record active and dynamic events and processes in erg deposits of the Lower Jurassic Navajo Sandstone near Moab, Utah. The erg deposits preserve depositional environments of eolian dune, interdune, fluvial, playa, lake, and spring. A large range of SSD features, from intact beds showing little deformation to pervasively disturbed beds, exist in many of these deposits. A simplified classification index captures the different scales of SSD in ascending order of deformation intensity: 1) mostly intact bedding with small-scale wavy or undulatory deformation structures within single beds; 2) dish and flame structures; 3) meter-scale, kinked, slumped, rolled, overturned, vertical, and detached contorted crossbedding, and associated centimeter- to meter-scale pipes; and 4) disruptive diapirs and laterally extensive massive sandstone. The SSD features of deformed crossbed sets, diapirs, and massive sandstone beds, are consistently juxtaposed, and are thus genetically linked. Although the Navajo Sandstone has been considered a classic example of an extensive dry eolian system, both individual and combinations of strata bounded SSD features exemplify dynamic deformation, liquefaction, and fluidization that took place at various times after deposition. The lowest degree of deformation, SSD 1, is largely attributed to autogenic––inherent to the eolian system––or local allogenic processes. Larger degrees of deformation, SSD 2–4, were more likely produced by allogenic, external-forcing processes from regional changes in climate and/or near-surface groundwater conditions originating from the Uncompahgre uplift, with the deformation triggered by some event(s). Possible significant ground motion could have led to large-scale disruption in the Navajo sand sea across kilometer-scale intervals. The Navajo example establishes valuable hierarchical relationships of processes and products for recognizing and interpreting SSD in other ancient and modern eolian systems. This has particular relevance to sedimentary discoveries on Mars, where SSD features are visible from remote sensing imagery and rover exploration.


Terra Nova ◽  
1997 ◽  
Vol 9 (5) ◽  
pp. 208-212 ◽  
Author(s):  
P.G. Silva ◽  
J.C. Canaveras ◽  
S. Sanchez-Moral ◽  
J. Lario ◽  
E. Sanz

2000 ◽  
Vol 49 (4) ◽  
pp. 197-214 ◽  
Author(s):  
Dan Bowman ◽  
Dorit Banet-Davidovich ◽  
Hendrik J. Bruins ◽  
Johannes Van der Plicht

Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 721
Author(s):  
Ukhwan Byun ◽  
A.J. (Tom) van Loon ◽  
Kyoungtae Ko

The Gyeokpori Formation in the Buan volcanic area primarily contains siliciclastic rocks interbedded with volcanoclastics. These sediments are characterized by a variety of soft-sediment deformation structures (SSDS). The SSDS in the Gyeokpori Formation are embedded in poorly sorted conglomerates; slump folds are also present in the formation. The deformation mechanisms and triggers causing the deformation are not yet clear. In the present study, the trigger of the SSDS in the Gyeokpori Formation was investigated using facies analysis. This included evaluation of the reworking process of both cohesive and non-cohesive sediments. The analysis indicates that the SSDS are directly or indirectly associated with the alternation of conglomerates and mud layers with clasts. These layers underwent non-cohesive and cohesive deformation, respectively, which promoted SSDS formation. The slump folds were controlled by the extent of cohesive and non-cohesive deformation experienced by the sediment layers in the slope environment. The SSDS deformation style and morphology differ, particularly in the case of reworking by slump activity. This study contributes to the understanding of lacustrine slope-related soft-sediment deformation structures.


Fractals ◽  
2018 ◽  
Vol 26 (01) ◽  
pp. 1850018 ◽  
Author(s):  
YOSHITO NAKASHIMA ◽  
JUNKO KOMATSUBARA

Unconsolidated soft sediments deform and mix complexly by seismically induced fluidization. Such geological soft-sediment deformation structures (SSDSs) recorded in boring cores were imaged by X-ray computed tomography (CT), which enables visualization of the inhomogeneous spatial distribution of iron-bearing mineral grains as strong X-ray absorbers in the deformed strata. Multifractal analysis was applied to the two-dimensional (2D) CT images with various degrees of deformation and mixing. The results show that the distribution of the iron-bearing mineral grains is multifractal for less deformed/mixed strata and almost monofractal for fully mixed (i.e. almost homogenized) strata. Computer simulations of deformation of real and synthetic digital images were performed using the egg-beater flow model. The simulations successfully reproduced the transformation from the multifractal spectra into almost monofractal spectra (i.e. almost convergence on a single point) with an increase in deformation/mixing intensity. The present study demonstrates that multifractal analysis coupled with X-ray CT and the mixing flow model is useful to quantify the complexity of seismically induced SSDSs, standing as a novel method for the evaluation of cores for seismic risk assessment.


Sign in / Sign up

Export Citation Format

Share Document