scholarly journals 2D full-waveform modeling of seismic waves in layered karstic media

Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. T25-T34 ◽  
Author(s):  
Yingcai Zheng ◽  
Adel H. Malallah ◽  
Michael C. Fehler ◽  
Hao Hu

We have developed a new propagator-matrix scheme to simulate seismic-wave propagation and scattering in a multilayered medium containing karstic voids. The propagator matrices can be found using the boundary element method. The model can have irregular boundaries, including arbitrary free-surface topography. Any number of karsts can be included in the model, and each karst can be of arbitrary geometric shape. We have used the Burton-Miller formulation to tackle the numerical instability caused by the fictitious resonance due to the finite size of a karstic void. Our method was implemented in the frequency-space domain, so frequency-dependent [Formula: see text] can be readily incorporated. We have validated our calculation by comparing it with the analytical solution for a cylindrical void and to the spectral element method for a more complex model. This new modeling capability is useful in many important applications in seismic inverse theory, such as imaging karsts, caves, sinkholes, and clandestine tunnels.

Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. R61-R83 ◽  
Author(s):  
Phuong-Thu Trinh ◽  
Romain Brossier ◽  
Ludovic Métivier ◽  
Laure Tavard ◽  
Jean Virieux

Viscoelastic full-waveform inversion is recognized as a challenging task for current acquisition deployment at the crustal scale. We have developed an efficient formulation based on a time-domain spectral-element method on a flexible Cartesian-based mesh. We consider anisotropic elastic coefficients and isotropic attenuation. Complete gradient expressions including the attenuation contribution spread into those of elastic components are given in a consistent way. The influence of attenuation on the P-wave velocity reconstruction is illustrated through a toy configuration. The numerical implementation of the forward problem includes efficient matrix-vector products for solving second-order elastodynamic equations for 3D geometries: An original high-order integration for topography effects is performed at nearly no extra cost. Combined adjoint and forward field recomputation from the final state and previously saved boundary values allows the estimation of misfit gradients for density, elastic parameters, and attenuation factors with no I/O efforts. Two-level parallelism is implemented over the sources and domain decomposition, which is necessary for a realistic 3D configuration. The misfit gradient preconditioning is performed by a so-called Bessel filter using an efficient differential implementation based on finite-element ingredients on the forward mesh instead of the often-used, costly convolution approach. A 3D synthetic illustration is provided on a subset ([Formula: see text]) of the SEG Advanced Modeling (SEAM) Phase II Foothills model with 4 lines of 20 sources. The structurally based Bessel filter and a simple data hierarchy strategy considering early body waves before all waves including surface waves allow a precise reconstruction of the P- and S-wavespeeds while keeping a smooth density description.


2012 ◽  
Vol 188 (3) ◽  
pp. 1203-1220 ◽  
Author(s):  
Paul Cupillard ◽  
Elise Delavaud ◽  
Gaël Burgos ◽  
Geatano Festa ◽  
Jean-Pierre Vilotte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document